Cutanco

UNITED STATES ROUTE 395 TRANSPORTATION CONCEPT REPORT

District 2

United States Route 395 Transportation Concept Report December 2017
 California Department of Transportation District 2

About System Planning and Transportation Concept Reports

System planning is the long-range transportation planning process for the California Department of Transportation (Caltrans). The System Planning process fulfills Caltrans' statutory responsibility as owner/operator of the State Highway System (SHS) (Gov. Code §65086) by identifying issues and proposing improvements to the SHS. Through System Planning, Caltrans focuses on developing an integrated multimodal transportation system that meets Caltrans' goals of safety, mobility, delivery, stewardship, and service. Development of System Planning products is part of the continuing, cooperative and comprehensive transportation planning process and provides an opportunity for public, stakeholder, and agency participation.

The Transportation Concept Report (TCR) is a California Department of Transportation System Planning Document that includes an analysis of a transportation route or corridor. A TCR establishes a 20-year consensus-based concept for how California State highways should operate and broadly identifies the nature and extent of improvements needed to attain that operating conditions. Caltrans District 2 endeavors to maintain a target Level of Service (LOS) at the transition between LOS " C " and LOS " D " on State highway facilities. A TCR identifies longrange objectives for a route and helps to guide short-term decisions for improvements.

The United States Route (US) 395 TCR is a collection of route information and data including current and projected operating characteristics of US 395 in Caltrans District 2. The plan evaluates operational conditions and identifies potential improvements. Many different elements are considered such as development and growth trends, land uses, and local road connections. The plan considers existing State, local and regional plans and studies, while emphasizing the importance of stakeholder involvement in the planning process. The TCR should be considered when developing other area plans and studies. Projects developed for US 395 need to be evaluated for consistency with this TCR.

The benefits of an adopted TCR include:

- Identifying, prioritizing, and addressing the greatest needs within the route.
- Protecting infrastructure.
- Logical sequencing of projects.
- Efficient use of available funding.
- A common vision for the future of the route.

Additional Information

For additional information on the US 395 Transportation Concept Report contact:
California Department of Transportation-District 2
Office of System Planning
Address:
1657 Riverside Drive (MS-3)
Redding, CA 96001
(530) 229-0518

Internet site: http://www.dot.ca.gov/dist2/planning/conceptrpts.htm
Disclaimer: The information and data contained in this document are for planning purposes only and should not be relied upon for final design of any project. Any information in this Transportation Concept Report (TCR) is subject to modification as conditions change and new information is obtained. Although planning information is dynamic and continually changing, District 2 System Planning Division makes every effort to ensure the accuracy and timeliness of the information contained in the TCR. The information in the TCR does not constitute a standard, specification, or regulation, nor is it intended to address design policies and procedures.

California Department of Transportation

Provide a safe, sustainable, integrated and efficient transportation system to enhance California's economy and livability.

[^0]
Traveler Information Links

Homepage - Caltrans District 2

Homepage: http://www.dot.ca.gov/d2/index.html
Visitors to the homepage can click on links that take them to websites such as QuickMap, Maps and Traffic Cameras, Cycling in District 2 and Highway Conditions \& Planned Roadwork. A travel conditions map appears on the homepage, as well as links for mobile device viewing. Visitors to the page can check current highway conditions by entering a highway number into a search field in the travel conditions section.

Maps - Traffic Information

QuickMap: http://quickmap.dot.ca.gov/
This map-based platform shows site visitors real-time traffic information including traffic speed, lane closures, incidents, message signs, cameras and chain controls. Clicking on the different icons opens popup boxes with the information related to each icon. For example, clicking on a lane closure icon causes a box to open displaying information such as location, direction and time period. Clicking on a camera icon opens the image the camera is capturing for the chosen location. QuickMap applies to the entire state.

Maps - Construction

Construction Projects: http://www.dot.ca.gov/dist2/projects.htm
This page displays a map of locations of construction projects within District 2.

Maps - Weather \& Chain Control

Traffic Cameras \& Road Weather Information: http://www.dot.ca.gov/dist2/travelmap.htm
This link opens a map of District 2 that indicates CCTV, RWIS and CCTV/RWIS locations. Visitors to the site may click on a dot shown on the map to open the camera image of current roadway conditions, weather data, or both.

National Weather Service - Weather for Travelers:

http://www.wrh.noaa.gov/sto/brief/caltransbriefdist2.php
A travel forecast for any location in the country can be accessed from this link. The page opens up to a map with different user selected layers, including radar, satellite, observation controls and webcams. The observation controls include wind and temperature data. The Travel Forecast is currently in an experimental phase.

Maps - Traffic Information, Construction and Weather

One Stop Shop: http://oss.weathershare.org/

One Stop Shop provides real-time roadway information for western states on a map. The types of information include traffic speed, active and inactive changeable message signs (CMSs), closed circuit television (CCTV) cameras, chain restrictions, construction, incidents, information, commercial vehicle information, road weather information systems (RWIS) and RWIS with road temperatures lower than 32°. Clicking on the different icons opens pop-up boxes with the information related to each icon. For example, clicking on an RWIS icon shows weather information such as temperature, wind direction and freezing point. Clicking on a construction icon shows information such as the location of the project, the start and end date, and any expected traveler delay.

Maps - District 2 Facilities

District 2 Facilities: http://www.dot.ca.gov/dist2/pdf/d2map.pdf
The above link opens a map of vista points, rest areas, park \& rides and maintenance stations in District 2.

Highway Information (Non-map)

Maps \& Traffic Cameras: http://www.dot.ca.gov/dist2/maps.htm

The Maps \& Traffic Cameras page contains several links for web pages containing information such as rest areas, chain control, Construction Projects, Quick Map and One Stop Shop.

Cycling in District 2: http://www.dot.ca.gov/dist2/rideurbike.htm
The District 2 Cycling Resource Page contains links for bicycle organizations at the county, state and national levels. There are also links for the Caltrans District 2 Cycling Guide, local bike plans and bicycle facility guidance.

Highway Conditions \& Planned Roadwork: http://www.dot.ca.gov/dist2/roadinfo.htm
This website provides links for current highway conditions, such as the Lane Closure System, current highway conditions, road conditions (in mobile device format), District 2 Highway Information Map and CHP traffic incident information. Also included is a listing of District 2 traffic alerts.

Rest Area Information: http://www.dot.ca.gov/hq/maint/ra/
Links for a listing of statewide rest areas and RV sanitation stations are provided.
Points of Interest \& Scenic Info: $\underline{h t t p}: / / w w w . d o t . c a . g o v / d i s t 2 / s c e n i c . h t m ~$
Links for Scenic Highways information as well as points of interest by county in District 2 are provided on this website.

Local Bus/Train/Air Service: http://www.dot.ca.gov/dist2/localbta.htm
Web links, addresses and other contact information are listed for buses, passenger rail service and the Redding Airport.

Planned Lane Closures: https://lcswebreports.dot.ca.gov/
Site visitors can search for closures on state highways within California by clicking on a District. Users can then specify county, route, dates and time period. Search queries can be as narrow or as open as desired. Search results appear in report format in a new screen, and include information regarding whether the closure is in-progress, completed or canceled. The closure is listed as "no status" if it is for a future date.

California Highway Information: http://www.dot.ca.gov/cgi-bin/roads.cgi
Visitors to the site can check current highway conditions, such as traffic control, lane closures and wind advisories for any state highway in California by entering the highway number. Identical information can be obtained by calling the Caltrans Highway Information Network (CHIN): 800.427.7623.

California Highway Patrol (CHP) Traffic Incident Information Page: http://cad.chp.ca.gov/
Visitors to the site can select a CHP Communication Center anywhere in California and retrieve incidents within the jurisdiction. The screen refreshes every 60 seconds. Clicking on "details" will result in a display of information pertaining to the selected incident, such as time, status and location.

Highway Conditions Report: http://www.dot.ca.gov/hq/roadinfo/Hourly
This site lists highway information for every state highway in California. Information is presented in numerical order of the highways. For example, the first highway listed is State Route (SR) 1; the second highway is SR 2, followed by SR 3, SR 4, I-5 and so on through I-980. The site is updated hourly and provides information such as traffic control, lane closures, expected delays, detours and wind advisories.

Traveler Information Resources

					0 $\stackrel{0}{0}$ 0 $=$	\sum_{0}^{∞}	$\underset{U}{\gtrless}$	\sum_{π}^{∞}			
One Stop Shop: http://oss.weathershare.org/	-	-	-	-	-	-	-	-	-	-	-
QuickMap: http://quickmap.dot.ca.gov/	-	-	-	-	-	-	-		-		-
Construction Projects: http://www.dot.ca.gov/dist2/projects.htm		-	-								-
Traffic Cameras \& Road Weather Information: http://www.dot.ca.gov/dist2/travelmap.htm		-	-				-	-		-	
Chain Control: http://www.dot.ca.gov/dist2/chainup/allcntys.htm		-	-	-							
National Weather Service: http://www.wrh.noaa.gov/sto/brief/caltransbriefdist2.php	-	-	-							-	
Planned Lane Closures: https://lcswebreports.dot.ca.gov/	-	-									-
California Highway Information (800.427.7623): http://www.dot.ca.gov/cgi-bin/roads.cgi	-										-
CHP Traffic Incident Information: http://cad.chp.ca.gov/	-										
Highway Conditions Report: http://www.dot.ca.gov/hq/roadinfo/Hourly	-										\bullet
District 2 Facilities: http://www.dot.ca.gov/dist2/pdf/d2map.pdf		-									
Highway Conditions \& Planned Roadwork: http://www.dot.ca.gov/dist2/pdf/d2map.pdf											-

TABLE OF CONTENTS

Executive Summary 1
Stakeholder Participation. 6
Report Signature Sheets 8
US 395: International, National and Statewide Context 10
General Route Information 13
Route Description 13
Route Terrain 14
Route Location 14
Legal Description 14
Route Designations 16
Land Use and Development 17
Community and Economic Characteristics 22
Trip Generating Facilities and Travel Patterns. 23
Cold Springs, Nevada 23
Major Route Connections 25
Access Control 28
Route Overview and Purpose 29
Vehicles 29
Bicycles 29
Pedestrians 31
Transit Regional. 31
Transit Interregional 31
Freight 32
Route Segmentation 35
Route Performance 37
Level of Service 37
Route Performance Table 37
Interstate 11: A Long-Term Planning Consideration 38
Route Concept. 39
Major Management Actions 39
Segment Fact Sheets 43
Appendix A: County Information 89
Appendix B: Public Outreach Activities \& Public Involvement. 91
US 395 Summary of Comments 112
SUMMARY OF COMMENTS - ALTURAS PUBLIC WORKSHOP 116
SUMMARY OF COMMENTS - DOYLE PUBLIC WORKSHOP 121
SUMMARY OF COMMENTS - JANESVILLE PUBLIC WORKSHOP 125
Appendix C: Tribal Fact Sheets 136
Appendix D: Route Designations 137
Appendix E: Environmental Considerations 140
Appendix F: Historical Markers Near US 395 151
Appendix G: Route Inventory 155
Appendix H: Truck Information 165
Appendix I: . Capacity Analysis and Level of Service 167
Appendix J: Traffic Forecast 170
Appendix K: Alternatives Considered 172
Appendix L: Access Management 173
Appendix M: US 395 Four-Lane Divided Expressway Impact Checklist 175
Appendix N: Local Partner - Safety Focused Rehab 177
Appendix O: Expressway Passing Segments 183
Appendix P: Speed Differential - Literature Review. 184
Appendix Q: Sample General Plan Policies 188
Appendix R: Sample Regional Transportation Plan Policies 191
Appendix S: Four-Lane Divided Expressway - History 194
Appendix T: Glossary of Terms and Acronyms 197
Appendix U: Resources 206

EXECUTIVE SUMMARY

Route Description

US 395 is a route that begins in southern California, passes through four states and ends at the international border with Canada. This TCR focuses on the 204-mile-long portion of US 395 within District 2 which includes Sierra, Lassen and Modoc Counties. Two maps showing the route within District 2 are on the next two pages.

The setting of the route is high desert with the primary surrounding land uses being open space, ranching and agriculture. Most of the residences are located within communities, but some homes are located along rural stretches outside of communities.

The route's general attributes, such as volumes and route purpose can be discussed in terms of three sections: Nevada state line to the SR 36 junction, US 395 in Alturas and US 395 from the SR 36 junction to the Oregon state line (excluding Alturas).

Nevada State Line to the SR 36 Junction

This section of US 395 is mostly two-lane conventional with limited passing lanes. The section between the Nevada state line (SIE 0.0) and Hallelujah Junction (LAS R4.6) is a four-lane divided expressway. The highest volume along the route within District 2 is 9,000 vehicles per day just south of Hallelujah Junction. This section of the route serves several purposes including goods movement, commuting, and travel for errands. The route from the Nevada state line to the SR 36 junction is part of a Tier 3 Freight Route that extends to the Pacific Coast. There are two major employers located just off-route near Herlong: the Sierra Army Depot and the Federal Correctional Institution, Herlong. Many trips that use US 395 along this section either originate in or are destined for the Reno area.

Alturas

This section of US 395 is a four-lane conventional highway that serves as a Main Street through the city of Alturas. The highest bicycle and pedestrian volumes along US 395 in District 2 are located within Alturas. Modoc High School is located on US 395 in Alturas and many of the students walk or ride bicycles to school. AADT is 5,700 in Alturas and many of the trips are local or intra-regional. There are multiple employers and commercial establishments along the route in Alturas which attract trips. Many driveways are along the route and some sections allow on-street parking.

SR 36 Junction to the Oregon State Line (Excluding Alturas)

This section of US 395 is two-lane conventional. AADT along this section is low, ranging from 700 at the Oregon state line (MOD 61.6) to 3,650 near Johnstonville (LAS 61.1). Trips along this section of the route are for the movement of goods (such as locally-produced hay) or running errands (such as medical appointments in Susanville or Alturas).

Key Route Considerations

Below are the primary route considerations along sections of US 395 where a change in facility type and/or number of lanes is recommended. Other route considerations can be found in individual segment fact sheets.

Hallelujah Junction to the SR 36 Junction

- The differential speed limit of 55 mph for trucks and 65 miles per hour for passenger cars results in backups behind trucks and increases the demand for passing. Drivers sometimes do not follow passing laws.
- Heavy truck, military and commute traffic to and from Garnier Road (A26) leading to SIAD and FCI Herlong, especially during the morning and afternoon peaks. Queues form in the afternoon along Garnier Road due to high traffic flows onto southbound US 395.
- Numerous vehicles exceed the posted speed limit.
- Heavy truck and commute traffic to and from Herlong Access Road (A26) leading to SIAD and FCI Herlong, especially during the morning and afternoon peaks.
- Legacy of regional agency and community expectations of expanding US 395 between Hallelujah Junction and the junction with SR 36 to four lanes.

US 395 in Alturas

- Drivers sometimes exceed the posted speed limit through the community.
- Close proximity of residences, the high school, retail, offices and government facilities present opportunities for active transportation trips.
- Community member and agency interest in traffic calming.

Route Concept

Two major changes to the existing US 395 facility type are recommended along US 395:

- Upgrade the existing two-lane conventional highway to a four-lane divided expressway from Hallelujah Junction to the SR 36 junction (LAS R4.6-R61.1).
- Implement traffic calming measures in the City of Alturas.

UPGRADE TO FOUR-LANE DIVIDED EXPRESSWAY - HALLELUJAH JUNCTION TO CITY OF SUSANVILLE (LAS R4.6-R61.1):

Factors Supporting Action:

- Expansion to four-lane expressway has been the concept since the 1980's.
- There is significant public and agency support within Lassen County for expansion to a four-lane divided expressway.
- This portion of US 395 is a key part of the high priority networks for movement of people and freight within and through northern California.
- A four-lane divided expressway should provide significant safety benefits during both construction (separation of workers from traffic) and future operation (this facility type typically outperforms others in California in the 5,000-15,000 AADT range).
- Expansion to four-lane divided expressway will provide excellent performance (Level of Service).
- A four-lane expressway and accompanying intersection consolidations/improvements will significantly improve operations in the corridor.

Key Challenges to Implementation:

- It will take multiple decades of ongoing, consistent commitment and action by all levels of government (federal, state, local) and area residents to achieve 50-plus miles of new four-lane divided expressway.
- The level of funding needed to achieve a four-lane divided expressway exceeds reasonably foreseeable revenue.
- ITIP
- RTIP
- SHOPP
- Competitive (non-formula programs)

Actions that may be considered under existing guidance/policy:

- Access management, including maintenance of existing access control and careful consideration of encroachment permits.
- Use the "US 395 Expressway Impact Checklist" during review and development of every future transportation and land use project along US 395 between SR 70 and SR 36. The checklist encompasses topics for consideration such as:
- Access point consolidation
- Driveway closures
- Purchase of access control
- Right-of-way acquisition
- Frontage road construction
- Location of utilities within the right of way
- Proximity to existing or proposed future communities
- Wildlife crossings
- Mitigation sites
- Utilize innovative rehabilitation strategies such as the "Local Partner - Safety Focused Rehab."
- Do not build traditional passing lanes - achieve passing opportunities through development of "Expressway Passing Segments."

Actions that may require a longer time frame and/or additional steps to achieve:

- As a possible interim measure while working toward the four-lane expressway, consider the potential safety and operational benefits of implementing a universal speed limit along US 395.
- Develop a partnership between Caltrans, Lassen County and the SIAD to explore various traffic management options such as staggered work shifts, freight delivery windows and innovative (non-traditional) sources of funds for highway improvements.
- Update the Lassen County General Plan to include specific policies and standards regarding development along and within the US 395 corridor.
- Update the Lassen Regional Transportation Plan to include specific policies and standards pertaining to upgrading US 395 to a four-lane divided expressway.
- Identify project team and funding to update and finalize the draft Honey Lake Expressway Study.
- This study will develop more refined concept features, including facility layout, typical sections, right-of-way needs, staging areas, alignment near communities, frontage road locations, intersection/interchange locations and spacing, and animal crossings.
- The community should be taken into consideration and study should reflect sensitivity to business and resident concerns.
- Seek funding for corridor-level mitigation and environmental management.
- Pursue competitive funding programs including, but not limited to:
- Congressional High Priority Program
- TIGER
- Fast Act
- Congested Corridor (SB1)
- Freight Program (SB1)

IMPLEMENT TRAFFIC CALMING MEASURES IN THE CITY OF ALTURAS (MOD R21.022.8):

Factors Supporting Action:

- Four lanes are not required to maintain concept LOS.
- Two lanes with two-way turn lane, turn channelization and improved pedestrian and bicycle facilities can improve operations.
- Enhanced safety for bicyclists and pedestrians.
- It is a regional priority to improve active transportation in Alturas.

Key Challenges to Implementation:

- Implementation is likely to only be triggered when another project, such as re-paving is planned in Alturas.
- Traffic calming improvements will likely require some local participation in funding, such as STIP, city funds, etc.
- There may be resistance to change from some community members.

Possible actions to be taken:

Traffic calming features could include, but are not limited to, the following:

- Traffic signals
- Additional signage (speed, crosswalk, bike, etc.)
- Bulb-outs
- Bike lanes
- Thermoplastic decorative treatments in crosswalks
- Road diet (lane reduction)

STAKEHOLDER PARTICIPATION

There are many opportunities for public input throughout the project development process. Caltrans solicits and records public input during the identification of a project need, during the environmental study process and at other relevant project milestones. Public involvement for route-specific planning offers unique opportunities for Caltrans to obtain and use region-wide community input about a route. Because routes like US 395 span multiple jurisdictions, planning efforts must take care to address individual community issues along with region-wide issues. These issues can include local traffic flow, economic/business development, multimodal opportunities, traveler information systems, regional mobility, and safety.

State and federal laws require public involvement to be a part of transportation decisionmaking. While such laws are meant to promote fairness and equity in decision making, Caltrans realizes that there are recognizable benefits to involving the public early and continuously. Some benefits from public engagement include increasing credibility, strengthening public support, and improving public trust. Involving the public early can result in using resources more efficiently to address public concerns and reduce the need to reevaluate decisions.

Caltrans District 2, in partnership with the Regional Transportation Planning Agencies for Sierra, Lassen and Modoc Counties, made the following outreach efforts during the TCR process:

Key elements of public outreach:

- Media outreach: press releases, emails, phone calls, flyers, announcement on electronic community calendars, community bulletin boards.
- Public workshops: Alturas (May 15, 2017), Doyle (May 24, 2017) and Janesville (May 25, 2017).
- Outreach to Native American tribes.
- Communication with RTPA staff to discuss key items to be included in the report such as issues along US 395.
- Internet website - Press releases about the workshops and announcement that the US 395 TCR is in progress. Included contact email link for TCR lead person.
- Local transportation commission meetings - Presented TCR updates and draft and final versions of the US 395 TCR.

Figure 1. Alturas
Monday, May 15, 2017

Figure 2. Doyle
Wednesday, May 24, 2017

Figure 3. Janesville Thursday, May 25, 2017

The final step in the approval process for a TCR in District 2 includes seeking acceptance from regional partners, and District 2 staff who were directly involved in review/approval of the TCR. The report signature sheets document support for the planning and outreach process used, and serves to acknowledge that this TCR presents reasonable concepts for future development and management of the route within the subject jurisdictions.

See the following appendices for further information:

- Appendix A: County Information
- Appendix B: Public Outreach Activities \& Public Involvement
- Appendix C: Tribal Fact Sheets

REPORT SIGNATURE SHEETS
 United States Route 395 Transportation Concept Report

PREPARED BY:

TRINA BLANCHETTE	
Transportation Engineer for the Office of System Planning Caltrans, District 2	

SUBMITTED FOR APPROVAL BY:

SCOTT WHITE Chief		Date
Office of System Planning Caltrans, District 2		

APPROVAL RECOMMENDED BY:

DONALD ANDERSON	
Deputy District Director	
Maintenance and Operations	
Caltrans, District 2	

PHILLIP BAKER	
Deputy District Director Program and Project Management Caltrans, District 2	

TOM BALKOW	
Deputy District Director Planning and Local Assistance Caltrans, District 2	

APPROVED BY:
\square

CONCURRENCE BY:

MATTHEW BOYER Executive Secretary Lassen County Transportation Commission	Date

US 395: INTERNATIONAL, NATIONAL AND STATEWIDE CONTEXT

US 395 is 1,300-mile-long south-to-north route that passes through four states before ending at the United States-Canadian border in Laurier, Washington. North of the Canadian border, the route becomes British Columbia provincial route 395 and ends after 2.5 miles at the junction with Route 3 near Cascade. Its purposes include goods movement, recreational travel and to serve local trips in the cities and communities through which it passes.

US 395 sometimes serves as a leg in long-distance interstate trips. One major connecting route includes I-15 (where the route begins) which runs east to Las Vegas, Nevada. Other major connecting routes include I-80 which runs west to Sacramento and the Bay Area and east across Nevada to Salt Lake City, Utah; 1-84 which runs west to Portland, Oregon and east to Boise, Idaho; and I-90 which runs west to Seattle, Washington.

US 395 passes through four states including California, Nevada, Oregon and Washington. The largest cities along the route are Reno, Nevada and Spokane, Washington. In Nevada, US 395 is 86 miles long and passes through Reno and Carson City. In Oregon it is 383 miles long and passes through Burns. In Washington, it is 274 miles long and passes through Kennewick and Spokane.

In California there are two separate lengths of US 395, separated by the Nevada portion. The more southern piece within California, between I-15 and the Nevada state line, is 355 miles long and the northern piece from the Nevada state line to the Oregon state line, across northeastern California, is 204 miles long. Cities in California through which US 395 passes include Victorville, Bishop and Alturas.

US 395 passes through five Caltrans Districts: 8, 6, 9, 3 and 2. It begins at the junction with I-15 in San Bernardino County (68.5 miles) in District 8 . Its primary purpose in that district is interstate and interregional travel for recreation and goods movement. In District 6, the route passes through Kern County (36.8 miles) and the primary purpose is recreation followed by goods movement. The route passes through Inyo (129.5 miles) and Mono (120.5 miles) Counties within District 9 and serves the purpose of recreational travel and goods movement. It is also a life line for nearby residents. There are only 3 miles of US 395 within District 3 and those three miles are in Sierra County. Within District 2, the route passes through Lassen (139.0 miles) and Modoc (61.6 miles) Counties. Route purposes within Districts 2 and 3 are goods movement and recreation. Between the Nevada state line and SR 36 there is significant commute traffic on US 395 to the prisons and the Sierra Army Depot.

This TCR covers the portion of US 395 that passes through Sierra, Lassen and Modoc Counties within Districts 2 and 3.

SR 395 Overview: Nevada State Line to Termo

US 395 Overview: Termo to Oregon State Line

GENERAL ROUTE INFORMATION

Route Description

Nationally, United States Route 395 (US 395) is 1,300 miles long. It starts at the I-15 junction in San Bernardino County, heads northward into Nevada, back into California, continues north through Oregon and Washington and ends in Laurier at the border with Canada.

The portion of US 395 in District 2 is 204 miles long and begins at the Nevada state line near Cold Springs. The first county north from Cold Springs that the route passes through is Sierra County for about three miles. From there, it passes 140 miles through Lassen County followed by 60 miles in Modoc County. District 2's portion of US 395 ends at the Oregon state line in New Pine Creek. From there, the route continues northward to Lakeview, Oregon, 15 miles away.

Most of the route is a two-lane conventional highway. However, there is a four-lane expressway section for eight miles from the Nevada state line to just north of the SR 70 junction (Lassen post mile ${ }^{1}$ R4.6). The route is a four-lane city street within the city of Alturas.

The 2-lane conventional section has many pieces that are striped for passing, and along some sections, there are additional passing lanes. Although some sections are striped for passing, at times, traffic volumes can be so high in some places that passing in the oncoming lane might not possible.

Much of the route passes through rural, sparsely developed lands with agricultural uses. There are some roadside retail uses such as gas stations with convenience stores along the section between the Nevada state line and the SR 36 junction (LAS R61.1). Residences and public facilities such as post offices and fire stations are primarily located within the few small communities along the route.

There are three summits along US 395: an unnamed summit at LAS 101.6 (elevation 5,470 feet), Sage Hen Summit at LAS 133.3 (elevation 5,555 feet) and Sugar Hill Summit at MOD 50.9 (elevation 5,146 feet).

Facilities near the route that generate trips along US 395 include the Sierra Army Depot, the Federal Correctional Institution in Herlong, the High Desert State Prison, the California Correctional Center, and businesses lining

Figure 4. Sage Hen Summit (LAS 132.0)

1 Using miles and counties, the post mile system identifies specific and unique locations in the California Highway System. Post Mile values increase usually from south to north or west to east depending on the general direction the route follows within the state. The post mile values increase from the beginning of a route within a county to the next county line. The post mile values start over again at each county line. Since US 395 passes through Sierra, Lassen and Modoc Counties, the post mile references appear using county abbreviations SIE, LAS and MOD.

US 395 (Main Street) in Alturas. Attractions include historic sites in Alturas, Modoc National Wildlife Refuge, the Warner Mountains, and Goose Lake State Park. The route passes through the XL Ranch Indian Reservation in northern Modoc County.

Route Terrain

Elevation along US 395 ranges from 4,010-5,555 feet. The lowest elevation is just north of Litchfield and the highest is at Sage Hen Summit (LAS 132.2, elevation 5,555 feet).

US 395 is in northeastern California high desert terrain. From south to north, it is mostly flat to rolling with bitterbrush stands and other shrubs and grasses along the southern portion through Janesville. Honey Lake, an inland alkaline lake, is just east of the route for about 16 miles from LAS 34.7 to 50.8. Just north of Janesville is Bass Hill.

North of the US 395/SR 36 junction, Lake Leavitt (a lake created as part of the Honey Lake Valley irrigation system) is adjacent to the highway. Continuing north, the landscape is mostly flat, high desert terrain with low elevation hills dotting the horizon in the distance. Between Litchfield and Sage Hen Summit, it is very arid with scattered shrubs and transitioning from no trees to few trees closer to the summit.

The landscape is slightly greener north of the summit and into southern Modoc County. The vegetation between the summit and Alturas varies with some sections containing vegetation typical of arid high desert, but there are many more sections with more grasses, shrubs, some pines and scattered junipers. Some short sections of highway are lined with trees on both sides. Along this section and for the remaining part of US 395 within Modoc County, the Warner Mountain range is to the east.

Irrigated fields are along some of the lower-level, flat stretches, and there is a system of irrigation canals extending from several different forks of the Pit River. The largest river in this area, the Pit River, flows into Shasta Lake and is a tributary to the Sacramento River.

North of Alturas, the landscape is similar to that south of Alturas, with the exception that the base of the Warner Mountains to the east is much closer. There are some unique geological features lining the route in the vicinity of MOD 30.0-30.4. At MOD 30.2 , the road cuts through a slight rise which consists of a white deposit. Another feature is at MOD 30.4, where a tall rock stack on the west side of the road appears to have been sliced vertically in order to construct the highway.

North of Davis Creek, Goose Lake is a large alkaline lake to the west of the highway that straddles the California/ Oregon state line. It is mostly dry with its size varying depending on levels of precipitation during the winter and spring.

Route Location

US 395 within District 2 is a south to north route in the northeastern portion of the state from the Nevada state line to the Oregon state line.

Legal Description

The California State Highway System consists of routes described in the California Streets and Highways Code. Division 1, Chapter 2, Article 3. (Section 610) describes US 395 as follows:

Route 395 is from:
(a) Route 15 near Cajon Pass to the Nevada state line passing near Little Lake, Independence, Bridgeport, and Coleville.
(b) Nevada state line northwest of Reno to the Oregon state line near New Pine Creek via Alturas.

Route Designations

A route's designation is adopted through legislation and identifies which designation(s) the route is associated with on the State Highway System. Typical designations include but are not limited to National Highway System (NHS) and Interregional Route System (IRRS).

Table 1: Route Designations			
	Sierra County	Lassen County	Modoc County
State Highway System ${ }^{1}$	Yes	Yes	Yes
Interregional Road System	Yes	Yes	Yes
High Emphasis	Yes	Yes	Yes
Strategic Interregional Corridor (2015 ITSP)	Yes	Yes; from the SIE/LAS County line to SR 36	No
Freeway \& Expressway System	Yes	Yes (No) ${ }^{2}$	Yes (No) ${ }^{2}$
National Highway System	Yes	Yes	Yes
National Highway System Congressional High Priority Corridor ${ }^{3}$	Yes	Yes	Yes
Strategic Highway Network	Yes	Yes; SIE/LAS County line to Garnier Road (A26)	No
Federal Functional Classification	Principal Arterial	Principal Arterial	Principal Arterial
Truck Designation	Terminal Access (STAA)	Terminal Access (STAA)	Terminal Access (STAA)
California Freight Mobility Plan - Tier 3	Yes	Yes; SIE/LAS County line to SR 36	No

${ }^{1}$ The State Highway System was added to the California Streets and Highways Code (Sections 300-635) in 1964. The intent of the legislature was to identify a set of routes in the State Highway System that serve the state's heavily traveled rural and urban corridors, connect the communities and regions of the state, and support the state's economy by connecting centers of commerce, industry, agriculture, mineral wealth, and recreation.
${ }^{2}$ The Freeway and Expressway System is a state designation added to the California Streets and Highways Code in 1959 (Sections 253.1-253.8). It consists of California State Highways that were declared by the Legislature to be essential to the future development of California. Many of the highways that are included in the Freeway and Expressway System were designated shortly following passage of the legislation. US 395 was one such route, added in 1959.
California Streets and Highways Code section 252 allows for periodic review of the Freeway and Expressway System:
The Legislature recognizes that the dynamic growth of this State will require periodic review of the California Freeway and Expressway System. The Legislature recognizes further that all highway planning and construction work should be correlated with a plan to provide a comprehensive system of access-controlled freeways and expressways throughout the State, and that the California Freeway and Expressway System established by this article has been selected and developed as a result of scientific studies by all levels of government in the State of California.

This TCR provides the review of US 395 as required by the above code section. The analysis contained herein demonstrates that development of US 395 north of SR 36 near Susanville to either freeway or expressway standard is no longer necessary or feasible.
${ }^{3}$ US 395 from Reno to Canada was one of 21 corridors in the United States to be designated as a Congressional High Priority Corridor in the Intermodal Surface Transportation Efficiency Act (ISTEA, 1991). This designation qualified the Reno to Canada section of US 395 for certain types of funding through ISTEA, through the Transportation Equity Act for the 21st Century (TEA-21) and through the Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU). No funding for Congressional High Priority Corridors was allocated in Moving Ahead for Progress in the 21st Century (MAP-21). Although the Canada to Reno section of US 395 was designated as a Congressional High Priority Corridor, it was not designated as a future interstate.

In Oregon, US 395 is designated as an Oregon Highway Plan (OHP) Freight Route.

The following table contains scenic designations for US 395:

Table 2: Scenic Designations	
National Scenic Byway - Volcanic Legacy Scenic Byway	No
State Scenic Highway	No
All American Road	No
Blue Star Memorial Highway	Yes- entire route
Three Flags Highway (Historical Usage Name)	Yes- entire route
Emigrant Trail Scenic Byway	Yes- Alturas to Oregon

For additional information on designations see Appendix D.
North of the state line, the portion of US 395 is designated as a piece of the Oregon outback
Scenic Byway for about 40 miles to Valley Falls, Oregon.

Land Use and Development

OPEN SPACE AND RECREATION
US 395 passes through a region with open space and recreational land uses, some being public lands and some privately owned. Of the federally managed lands, there are those managed by the Bureau of Land Management (BLM), United States Fish \& Wildlife Service and the United States Forest Service (USFS). US 395 also passes adjacent to some state lands managed by the California Department of Fish and Game. Additionally, there are a few privately-owned campgrounds and retreats near the route. See Appendix E for more information about recreational

Figure 5. School Bus Turning Toward Johnstonville Elementary School (LAS 61.3)
land along US 395.

AGRICULTURE

Agriculture and ranching comprise much of the land uses surrounding US 395. Some of the primary crops grown include hay, alfalfa, barley, wheat, potatoes and onions. Other agricultural
uses include nurseries and tree farms. In the vicinity of seasonal or year-round water sources are the most irrigated lands, especially near the various forks of the Pit River.

There are several ranches along the route with cattle being the most commonly raised livestock. Sheep and horses are also raised in the vicinity. There are some guest ranches along the route, attracting tourism. In Modoc County, the entire county is open range and 25% of land in the county is used for grazing.

RESIDENTIAL

In Lassen County, there are several residences along the highway, some within communities and some scattered along the route. Along US 395, the density of residential development typically decreases with distance from communities. In recent years, some mobile homes have been permitted on land zoned for agriculture. Many of the residences have driveways which enter US 395 from private property.

Figure 6. Modoc High School in Alturas (MOD 22.5)

According to the Lassen County General Plan Housing Element, there are modest needs for additional housing units during the 2014-2019 period. Housing in the Johnstonville area has been and is expected to grow in the near future. Other parts of the county with the greatest potential for new housing units include the unincorporated area outside of Susanville, and Herlong. 4,383 acres from the Sierra Army Depot were transferred to Lassen County and are available for commercial, residential and industrial uses including multifamily housing development uses.

Like Lassen County, most of the residences in Modoc County are located within communities, with housing density decreasing with distance from the population centers. Also, there are several driveways with direct access to the highway.

According to the Modoc County Housing Element, the number of households in the unincorporated part of the county is expected to increase. This is primarily due to an expectation of an in-migration of retirees. The county's objective is to encourage 99 new housing units in the unincorporated part of the county within the period of time covered in the element. However, there are constraints such as limited sewer and water service. In the future, most of the new residential growth in the unincorporated part of the county is anticipated near Alturas.

COMMUNITY MIXED USE

Several small communities are located along the route. In Lassen County, the route passes through or close to Doyle, Herlong Junction, Milford, Janesville, Johnstonville, Lake Leavitt, Standish, Litchfield, Ravendale, Termo and Madeline. In Modoc County, the route passes through Likely, Alturas (the only incorporated city in District 2 that the route passes through), Davis Creek and Pine Creek.

UTILITIES

There are long stretches of US 395 with large electric transmission lines and gas pipelines running parallel to and/or crossing the highway. In addition, there are a few gas facilities, an electrical substation and an electrical transformer station. A biomass power plant is located three miles east of the route along Wendel Road (LAS R76.9). Public telephones have service and are available for use in some small communities such as Ravendale (LAS 108.4).

COMMERCIAL
Most of the commercial uses along US 395 outside of communities are highway-oriented commercial and include businesses such as gas stations, convenience stores, auto repair and restaurants.

Figure 7. Phone Booth in Ravendale (LAS 108.4)

Many of the small communities have a mixture of land uses such as gas stations, residences, offices, light industry, other commercial, RV resorts, motels, schools, churches, post offices, general stores, utilities (such as water towers), fire departments. Some of the buildings within the community are historic.

ALTURAS

Alturas, with a population of 2,872 , is the largest community along the route and has the most varied mix of residences, businesses, and public facilities.

Through the community, houses, gas stations, shops, banks, government offices and hotels line US 395 on both sides. There are several historic buildings in town along or within a couple blocks of the highway. For more information about historic sites, see Appendix F.

Modoc High School is located on the east side of the highway near MOD 22.6. There are several other schools in town within a block or two of US 395. Also located off-route, but in the vicinity are the fire department, the airport and Rotary Fields (a baseball field complex).

INDUSTRIAL

Up through the 1990s, one of the primary industrial land uses in Lassen County was lumber mills. The number of mills has decreased significantly since that time. Other industrial uses include
mining, landfill and sand/gravel storage. The largest active industrial use is the Bass Hill Landfill solid waste facility (LAS 58.2). The pozzolan mine (LAS 8.4) is currently inactive, but can still be seen from the highway.

TRIBAL LANDS

US 395 passes near or through tribal lands of the Pit River Tribe. One long stretch of highway north of Alturas in Modoc County, passes directly through the XL Reservation (MOD 26.3-33.3). For more information about tribes whose ancestral lands are along or near the current location of US 395, see Appendix C.

FUTURE DEVELOPMENT

According to Lassen County's Draft Area Plan Update (2009), most of the future growth should be focused in the Johnstonville (LAS R61.2, more jobs) and Lake Leavitt (LAS 64.4, more residential)

Figure 9. Pt River Tribe XL Reservation (MOD 26.2) areas. Herlong Junction (LAS 34.8) is identified as a location for highway services, but limited residential growth west of the highway.

The draft plan also reported that Doyle community residents are interested in compact growth in the town center and that future development in Milford (LAS 42.3) and Janesville (LAS 54.4) west of Main Street is constrained by water, well, fire and/or septic issues.

LASSEN COUNTY PRISONS AND SIAD

Lassen County's largest industry is the prison system and largest single employer is Sierra Army Depot, built in 1942. Although the largest employer is SIAD, the largest employer of Lassen County residents is the High Desert State Prison. This implies that many of SIAD's employees commute from other counties. About half of the workers at SIAD live in Washoe County, Nevada and the other half live in Lassen County. The workers are government employees as well as contractors. There is a lot of temporary work on the base.

Figure 8. Afternoon Commute and Vanpools from Sierra Army Depot onto US 395 Southbound from Garnier Road (A26, LAS 29.8)

On January 1, 2001, the United States Army implemented the Mass Transportation Benefit Program which reimburses army employees for taking public transportation or carpooling to work, and has been in effect ever since. As of January 1, 2016, program participants receive up to $\$ 255$ per month for vanpool commute costs. It is estimated that a total of 40 vans carrying 250 workers commute to and from SIAD. Many of the vanpools originate in the Reno area.

Figure 10. Turnoff for the California Correctional Center and the High Desert State Prison (LAS 64.3)
In Lassen County, only a few large employers provide most of the jobs, including the Sierra Army Depot (SIAD, with 1,500 to 5,998 employees), California Correctional Center (1,000 employees), High Desert State Prison (1,250 employees), and the Federal Correctional Institution (FCI) Herlong (estimated 250-300 employees). Closure of any of these places or a reduction or expansion in workforce would probably have a very significant impact on commute trips along US 395.

Community and Economic Characteristics

Demographic and Economic Characteristics

Table 3 displays 2010 US Census data for counties that US 395 passes through. Also included are data for Loyalton and Susanville (both off-route), Alturas, California, and three datasets for Nevada: Washoe County, Cold Springs and Reno.

Table 3: County, City and Census Designated Place Census Data

	California State	Sierra County	Loyalton	Lassen County	Susanville	Modoc County	Alturas	Washoe County, Nevada	Cold Springs, Nevada	Reno, Nevada
Total Population ${ }^{1}$	37,253,956	3,240	769	34,895	17,947	9,686	2,827	421,407	8,544	225,221
Group Quarters	819,816	33	31	9,779	8,508	357	13	5,272	0	4,583
65+	4,246,514	676	151	3,474	1,184	1,905	432	50,879	628	26,246
Male Population	18,517,830	1,646	387	22,416	13,145	4,878	1,360	212,744	4,386	114,494
Female Population	18,736,126	1,594	382	12,479	4,802	4,808	1,467	208,663	4,158	110,727
White	21,453,934	3,022	722	25,532	11,269	8,084	2,430	324,070	7,265	167,179
Black or African American	2,299,072	6	2	2,834	2,249	82	15	9,814	151	6,429
American Indian and Alaska Native	362,801	44	37	1,234	612	370	81	7,209	98	2,835
Asian	4,861,007	12	3	356	198	78	45	21,790	170	14,232
Native Hawaiian and Other Pacific Islander	144,386	2	2	165	111	21	7	2,542	28	1,624
Hispanic or Latino	14,013,719	269	108	6,117	4,259	1,342	347	93,724	1,211	54,640
Median Household Income	\$61,094	\$39,009	\$45,333	\$53,107	\$50,735	\$36,212	\$27,500	\$53,040	\$63,106	\$46,770
Median House Value	\$366,400	\$231,400	\$122,900	\$185,500	\$171,400	\$164,100	\$135,400	\$203,300	\$125,000	\$202,100
Percent Unemployed	11.5\%	10.2\%	5.8\%	13.6\%	16.6\%	10.7\%	7.8\%	11.1\%	11.6\%	11.3\%
Population Projection, 2040	47,233,240	2,830	672	39,073	20,096	9,770	2,852	554,715	11,247	296,467
Population per Square Mile	238.9	3.4	2261.8	7.7	3041.9	2.5	1285.0	66.4	499.6	3258.9
Individuals Below Poverty Level	15.9\%	19.4\%	9.4\%	16.9\%	22.1\%	21.0\%	29.3\%	15.1\%	9.5\%	18.6\%
${ }^{1}$ Total Population includes individuals living in group quarters										

As for future growth to 2040, Sierra County is projected to have negative growth. Modoc County is projected to grow by 1%, Lassen County is projected to grow by 12% and the state of California is projected to grow by 27%. The highest growth is 32% within Nevada.

Within the counties through which US 395 passes, there is a high proportion of government employees. This is especially true in Lassen County due to the prisons and SIAD and in the Alturas area.

About 20% of the population in Modoc County is 65 years or older, and is expected to continue to increase. According to the Modoc County Housing Element, this is due to the in-migration of retirees and the out-migration of young adults and families. However, it is believed that there could be some in-migration of working-age adults who perform consultancy work.

Trip Generating Facilities and Travel Patterns

Commute data for counties US 395 passes through as well as for counties whose residents use US 395 in their commutes are presented in Table 4. Note that 3.5% of workers, or 6,945 total workers, in Washoe County commute to another state for work.

Table 4: Commute Data					
	Sierra County	Lassen County	Modoc County	Plumas County	Washoe County, Nevada
Population	3,240	34,895	9,686	20,007	421,407
Workers 16 years and over	1,134	9,423	3,500	7,297	198,420
Worked in county of residence	61.1%	91.8%	81.7%	81.6%	93.1%
Worked outside county of residence	25.0%	6.5%	13.6%	11.9%	3.4%
Worked outside state of residence	13.3%	1.7%	4.7%	6.5%	3.5%
Means of Transportation to Work: Carpool ${ }^{1}$	8.0%	11.0%	13.3%	11.8%	10.9%
${ }^{1}$ The national carpool rate is 9.6%.					

One statistic that stands out in Table 4 is that one in four Sierra County workers commutes to another county for work, and about half of that number commutes to another state, most likely Nevada. The routing they would use would depend on which part of the county they live in. Some would take SR 89 south to I-80 east; while others take SR 49 north to SR 70 east to US 395 south toward Reno.

Every county in the table has a higher rate of carpoolers than the national rate, with the exception of Sierra County.

Cold Springs, Nevada

Cold Springs is an unincorporated community in Nevada located along US 395 adjacent to the California state line. The population in 2010 was 8,544 , an increase from 3,834 in 2000. It is a mostly residential subdivision with 3,400 housing units.

In the 1970s, there was a change from 5-and 1-acre lot subdivisions to 1/3-acre lot subdivisions. Immediately following the change in zoning, there was an accelerated increase in homes built in Cold Springs. See Table 5 for a comparison of number of homes constructed by decade in Susanville and Cold Springs.

	Susanville		Cold Springs	
Total housing units	4,841	4,841	3,372	3,372
Built 2010 or later	0	0.00\%	16	0.50\%
Built 2000 to 2009	567	11.70\%	1,675	49.70\%
Built 1990 to 1999	604	12.50\%	631	18.70\%
Built 1980 to 1989	980	20.20\%	543	16.10\%
Built 1970 to 1979	603	12.50\%	489	14.50\%
Built 1960 to 1969	564	11.70\%	18	0.50\%
Built 1950 to 1959	423	8.70\%	0	0.00\%
Built 1940 to 1949	368	7.60\%	0	0.00\%
Built 1939 or earlier	732	15.10\%	0	0.00\%
Source: United State Census Bureau. DP04 Selected Housing Characteristics 2009-2013 American Community Survey 5-Year Estimates.				

Fifty percent of homes in Cold Springs were built in 2000 or later and most of the homes in Susanville were built between 1960 and 2010, representing a range of housing ages.

By 2025, population in Cold Springs is projected to climb to 11,378 , with growth slowing due to land and resource constraints such as limited water supply. Over the next 20 years, growth will consist of more suburban residential development and light commercial. Growth is expected to be concentrated in the Cold Springs Suburban Character Management Area (CSSCMA), preserving land outside of CSSCMA.

Major Route Connections

US 395 intersects with three other state highways: SR 70, SR 36 and SR 299

- SR 70 is a trans-northern Sierra west-to-east route that begins at the SR 99 junction in Sutter County and ends at the junction with US 395 in Lassen County. Most of the route is within Plumas County where it ascends into the mountains, over three summits, passes through some small communities, including Quincy, the Plumas County seat and then descends from Beckwourth Pass to its terminus at Hallelujah Junction at US 395. It is an important highway for recreational travel, but also some goods movement (primarily

Figure 12. SR 70 Junction (LAS R5.0) timber) and commuting/errand-running. It is an important lifeline for residents in the small communities that are along the route. For more information about SR 70, see the 2017 State Route 70 Transportation Concept Report: www.dot.ca.gov/dist2/planning/conceptrpts.htm

- \quad SR 36 crosses west to east in northern
 California through six counties (Humboldt, Trinity, Shasta, Tehama, Plumas and Lassen) from US 101 to US 395. SR 36 is a High Emphasis Route, a Focus Route and is part of the North Coast-Northern Nevada Strategic Interregional Corridor, as defined in the 2015 Interregional Transportation Strategic Plan between SR 44 and US 395. For more information about SR 36, see the 2012 State Route 36 Transportation Concept Report: www. dot.ca.gov/dist2/planning/conceptrpts.htm

Figure 13. SR 36 Junction (LAS R60.9)

- SR 299 is a west-to-east highway from US 101 on the Pacific Coast to the Nevada border near Cedarville. SR 299 and US 395 join in Alturas and are coterminous for five miles north of Alturas, with that section identified as US 395. The part of SR 299 from US 101
to Redding is a High Emphasis Route, a Focus Route and is part of the North CoastNorthern Nevada Strategic Interregional Corridor, as defined in the 2015 Interregional Transportation Strategic Plan. For more information about SR 299, see the 2009 State Route 299 Transportation Concept Report: www.dot.ca.gov/dist2/planning/conceptrpts.htm

Figure 14. SR 299 South Junction (MOD 22.8)

Figure 15. SR 299 North Junction (MOD 28.2)

Table 6 and Table 7 provide the location and functional classification of other major road connections along US 395 include:

Table 6: Major Road Connections in Lassen County

Name	Location	Functional Classification
Constantia Road	LAS R17.4 \& R23.2	Minor collector
Garnier Road (A26)	LAS 29.8	Major collector
Herlong Access Road (A25)	LAS 34.5	Major collector
Standish Buntingville Road (A3)	LAS 51.8 \& 70.1	Minor arterial
Janesville Road	LAS 52.6 \& 55.3	Major collector
Bass Hill Road	LAS 57.6	Minor collector
Richmond Road	LAS R61.1	Major collector
Center Road (A27)	LAS 72.9	Major collector
Mapes Road	LAS 76.1	Minor collector
Wendel Road	LAS R77.3	Major collector
Smoke Creek Ranch Road	LAS 82.2	Minor collector
Mail Route Road	LAS 108.5	Minor collector
Termo Grasshopper Road	LAS 115.4	Minor arterial
Juniper Ridge Road	LAS 115.5	Minor collector
Ash Valley Road	LAS 129.1	Minor collector

Table 7: Major Road Connections in Modoc County

Name	Location	Functional Classification
CR64-Jess Valley Road	MOD 3.2	Rural minor collector
CR189	MOD 4.2	Rural minor collector
CR56-Parker Creek Road	MOD R21.0	Rural minor collector
Carlos Street (Alturas)	MOD 21.9	Rural major collector
Modoc Street (Alturas)	MOD 22.0	Rural major collector
$4^{\text {th }}$ Street (Alturas)	MOD 22.3	Rural major collector
$8^{\text {th }}$ Street (Alturas)	MOD 22.6	Rural major collector
East Street (Alturas)	MOD 22.9	Rural major collector
CR55-Pencil Road	MOD 24.1	Rural major collector
CR48-Westside Road	MOD 42.8	Rural major collector
CR9-Fandango Pass Road	MOD 55.9	Rural minor collector

Access Control

Access control is the ownership by the State of the right to cross the highway right of way line. Where the State has access control, the adjacent property owners have no right of access to that highway.

The state of California controls access along US 395 as follows:

Route Overview and Purpose

Vehicles

Passenger vehicles are the primary user group along US 395, representing 70-90\% of all traffic along US 395. The purpose of trips for passenger vehicles are mostly for commuting, for recreation and for running errands.

Commuting

There are four major employers near US 395. Two are near Herlong (about five miles east of US 395, along A25 or A26, LAS 29.8 \& 34.5): the Sierra Army Depot (SIAD) and the Federal Correction Institution. And two are two miles north of Leavitt Lake (LAS 64.8): the High Desert State Prison and the California Correctional Center.

Commute patterns along US 395 are typically between population centers and major employers. A park and ride study was commissioned by the Lassen County Transportation Commission. The study revealed three major commute patterns along US 395:

- From Susanville/Janesville (LAS 53.0+/-) to SIAD (east of LAS 34.5)
- From Doyle (LAS R24.4), Herlong (east of LAS 34.5), Milford (LAS 42.3), Buntingville (LAS 51.9) and Janesville (LAS 53.0+/-) to Susanville.
- From Susanville, Janesville (LAS 53.0+/-), Buntingville (LAS 51.9), Milford (LAS 42.3), Herlong (east of LAS 34.5) and Doyle (LAS R24.4) to Washoe County (Nevada) southeast along US 395.
A fourth significant commute pattern exists along US 395: from Nevada to SIAD or the prisons

Recreation

US 395 is used for recreational travel to destinations along the route as well as its being used as a leg in trips to recreational destinations further away.

Running Errands

US 395 serves as an important route in trips made for the purpose of running errands. There are some small communities along the route that have limited medical, shopping and employment opportunities. Residents of these small communities often travel to Alturas, Susanville and/or Reno for errands.

Figure 16. Pick-Up Truck Towing Camper on US 395 (LAS 82.9)

Bicycles

Bicyclists are allowed on the entire US 395. Treated shoulder widths on the route range from zero to ten feet. There are few cyclists outside of communities. However, the city of Alturas has high bicycle volumes. The reason for the high volumes of cyclists in Alturas is due to density of schools, residences, jobs, shops and services along Main Street (US 395).

An unpaved multi-use trail; the Modoc Line Rail Trail; is located along the east side of US 395 from Wendel Road to LAS 82.9, the west side of US 395 from LAS 82.9 to LAS R115.1, and the east side of US 395 from LAS R115.1 to Likely. According to the Modoc Line Rail Trail website, portions of the trail are not yet complete. It has a posted speed limit of 25 mph and is open to bicycles, pedestrians, equestrians and off-highway vehicles. Motorized users yield to non-motorized.

Figure 19. Bicyclist on Main Street in Alturas (MOD 22.0)
The Lassen County Bikeway Master Plan proposes development of a new rail trail connecting Susanville to Wendel. Other destinations along the route include Johnstonville, the state prisons and Litchfield. Other Lassen County policies contained in various other plans, such as the RTP support expansion, development and maintenance of bicycle and pedestrian facilities. The county supports the use of abandoned rail lines as bicycle and pedestrian facilities.

Figure 18. Madeline Trailhead for the Modoc Line Rail Trail (Off-Route, Near LAS 128.9)

In Modoc County, the county has expressed a need for improved active transportation in Alturas; that it is a regional priority. Community members and regional agency staff support features and strategies to calm traffic and improve conditions for bicyclists and pedestrians along Main Street (US 395).

Pedestrians

Most pedestrians along the route use the highway within communities. The community with the greatest pedestrian volumes is the city of Alturas. Walk Score is a scoring of streets and neighborhoods according to their "walkability." On the Walk Score website, the city of Alturas is scored 55 out of 100 and is considered somewhat walkable. Occasionally pedestrians outside of communities consist of drivers walking from disabled vehicles, long-distance pedestrians and hitchhikers.

Many of the pedestrians along US 395 are school children who sometime walk along or cross the highway to get to and from school or bus stops. Schools located on US 395 include Johnstonville Elementary School (LAS R 61.3), Shaffer Elementary School in Litchfield (LAS 73.0) and Alturas High School (MOD 22.6). In Alturas, there is an at-grade railroad crossing within the school zone of the high school. In Likely, school zone paint is on the highway even though the school in town has closed.

Transit Regional

The Lassen Rural Bus System operates three routes that use US 395:

- The East County Route that runs between Susanville and Herlong and offers several stops along US 395, including Johnstonville, Leavitt Lake, Litchfield, Standish and Milford.
- The South County Route runs from Susanville to Doyle and makes stops in Janesville, Milford and Herlong.
- Leavitt Lake Route runs Tuesdays and Thursdays from Susanville to Leavitt Lake.

Lassen Rural Bus also operates Dial-a-Ride service. Other services in the Lassen area include vehicle-for-hire vouchers for seniors and people with disabilities to ride taxis, Indian Elders Council for seniors, meal transportation, Mount Lassen Motor Transit between Red Bluff and Susanville, school buses and Lassen Community College buses. In Modoc County, Sage Stage offers Dial-a-Ride service within a 10 -mile radius of Alturas.

Transit Interregional

Modoc Sage Stage offers daily service from Alturas to Reno, NV with stops in Likely, Madeline, Termo, Ravendale, Standish, Susanville, Janesville (at the park and ride), Doyle and Hallelujah Junction. The bus stops in Reno at the Greyhound station, the Amtrak station, the Airport and RTC Citicenter Transfer Station. The travel time between Alturas and Reno, Nevada is four hours. Travelers most likely to ride the Alturas to Reno line are typically transit-dependent and use this service for medical appointments and other services available only in larger cities.

The Plumas County Transportation Commission has identified a long-term need to develop a formal transit stop near Hallelujah Junction for transfers.

Freight

Trucks

Movement of freight in the vicinity of US 395 is accomplished primarily by truck and secondarily by rail. The truck designation along the entire length of US 395 within District 2 is STAA Terminal Access. The portion of US 395 from Nevada to SR 36 is part of an important northern California west to east Tier 3 Freight Route that extends to the Pacific Coast north of Arcata, California. According to the California Freight Mobility Plan (CFMP 2014), the 299/44/36/395 corridor is the only continuous east/west facility in Northern California for freight between US 101 and US 395.

The highest truck volumes along US 395 are 1,072 trucks per day, just north of the SR 70 junction (LAS R4.6). Truck volumes at other state highway junctions are included in Table 9.

Table 9: Truck Volumes at State Highway Junctions along US 395

US 395 Junction with...	Post Mile Location	Truck Volumes South of Junction	Truck Volumes North of Junction
SR 70	LAS R4.6	727	1072
SR 36	LAS R61.1	620	319
SR 299 (West)	MOD 22.8	279	173
SR 299 (East)	MOD 28.3	124	93

The highest percentage of trucks is around 30\%, between Litchfield (LAS 72.9) and Likely (MOD 3.2). West of Susanville, many of the trucks travel to and from Redding, the Pacific Coast, or north along I-5. Very few trucks turn onto or from SR 70, or continue north along US 395 north of the SR 36 junction. Those that travel along US 395 north of the SR 36 junction typically transport locally-produced or -sourced goods such as alfalfa hay, livestock, dairy, potatoes, garlic, bees, vegetables, gravel and timber. Some trucks transport wood chips to a biomass electrical generation facility just off US 395, along Wendel Road (LAS R76.9).

Figure 20. Hay Truck Entering US 395 (LAS 108.4)

It is expected that truck volumes along US 395 will increase over the 20-year TCR horizon. In March 2016, the U.S. DOT projected a significant increase in its 30 -year freight projections for the country. Nationally, the weight of goods moved by truck is projected to increase by 44% (from 11,513 to 16,529 million tons) over the next 30 years.

Interstate vehicles entering California are required to pass through border protection stations which inspect vehicles for plant materials that are in violation of plant quarantine laws, in an effort to prevent invasive species from entering the state. Vehicles entering California from Nevada pass through the Long Valley Station (LAS 1.5) and vehicles entering California from Oregon pass through the Alturas Inspection Station (MOD 27.0). More information about border protection stations can be found in Appendix G.

In addition to the inspection stations, there are four commercial vehicle enforcement facilities along US 395 in District 2. All four are mini-site weigh stations which are in operation occasionally. More information about weigh stations can be found in Appendix G and online.

Reno, Nevada is a major freight hub for some companies. For example, there is a 700,000 sq. ft. Sherwin-Williams Distribution Center north of Reno, off of US 395, near the airport, which is the nearest center to northern California north of Bakersfield. According to the Washoe Freeway Corridor Study, only 16% of the region's commercial tonnage is transported along US 395, compared with 77% of the tonnage being transported along I-80.

In addition to Sherwin-Williams trucks along US 395, semis owned by Walmart, UPS and Fed Ex are common. The Sierra Army Depot is a major customer of Fed Ex. The Sierra Army Depot also has goods shipped via other truck companies, military transports, railroad and air the Amedee Army Airfield located onsite.

Appendix H includes additional information about truck designations and a map of the truck freight network in District 2.

Considerations for Trucks

- Unofficial truck rest areas - there are many wide gravel locations along US 395 where trucks pull over.
- High wind events - There are frequent high wind events along US 395 between Nevada and Susanville which sometimes result in closures to high profile vehicles, when wind gusts exceed 50 mph . Advisories are posted when wind speed exceeds 25 mph .
- Develop additional truck parking areas in the vicinity of Susanville to accommodate trucks on US 395 during wind and other road closures (CFMP 2014).
- Modify at-grade intersection at the SR 36 \& US 395 junction (CFMP 2014).

Railroad

Some goods movement in the vicinity of US 395 is achieved by rail. Union Pacific has a rail line that meanders roughly parallel to US 395 in the Red Rock Road/ Doyle area, then continues north to Herlong. The railroad north of Herlong has been abandoned and repurposed as a rail trail. Military goods are sometimes shipped to the Sierra Army Depot via rail.

Lake County Railroad, which meanders along 395 between Alturas and Lakeview, Oregon, carries agricultural, wood and mineral/ore products. The railroad crosses US 395 atgrade in downtown Alturas near the high school. Trains pass through Alturas about

Figure 22. At-Grade Railroad Crossing in Downtown Alturas (MOD 22.5) twice per week to and from Lakeview. It was reported by some community members at the Alturas public workshop that some railroad crossing elements such as the crossing lights or arms are sometimes broken.

Table 10: Railroad Crossings along US 395	
Post Mile	Name
LAS R23.0	Doyle OH
MOD R15.1	Juniper OH
MOD R20.8	Alturas OH
MOD 22.5	Lake County Railroad (at-grade, active line)

The Lassen County General Plan (2000) contains various policies supporting expanded freight rail use and reintroduction of passenger rail. If railroads are discontinued, the county supports alternative uses of rail lines including for burying utility corridors, trails and keeping the option open to redevelop rail in the future. Modoc County's General Plan supports continued use of rail within the county.

Airports

The nearest international commercial airport is in Reno and is about 90 miles south of Susanville.
The Susanville Municipal Airport is a regional airport located near LAS 60.3. There is a limited use airport along the route in Ravendale (LAS 108.5).

ROUTE SEGMENTATION

For purposes of analysis, highways are divided into smaller pieces called segments. Each segment selected has one or more characteristics that distinguish it from other segments.

Criteria considered in the selection of segments for analysis include:

- Change in function or use of route.
- Significant changes in AADT.
- Significant changes in terrain or grade.
- Junction with or crossing of another highway or major facility.
- Urban or rural boundaries or other significant change in land use.
- District or county boundaries.

US 395 is broken down into nine segments for analysis purposes

SR 139 Route Segments						
	Location Description	Begin		End		Segment Length (Miles)
No.		County	Post Mile	County	Post Mile	
1	Nevada state line to junction SR 70	Sierra	R0.0	Lassen	R4.6	7.7
2	Junction SR 70 to Garnier Road	Lassen	R4.6	Lassen	29.8	25.2
3	Garnier Road to Janesville Road	Lassen	29.8	Lassen	55.2	25.3
4	Janesville Road to junction SR 36	Lassen	55.2	Lassen	R61.1	5.9
5	Junction SR 36 to Standish Buntingville Road (A3)	Lassen	R61.1	Lassen	70.1	9.2
6	Standish Buntingville Road (A3) to LAS/MOD county line	Lassen	70.1	Lassen/ Modoc	$\begin{gathered} 139.0 / \\ 0.1 \end{gathered}$	68.6
7	LAS/MOD county line to McDowell Avenue, Alturas	Lassen/ Modoc	139.0/ 0.1	Modoc	21.0	21.0
8	Alturas: McDowell Avenue to 2 miles east of N East B Street	Modoc	21.0	Modoc	23.3	1.5
9	.2 miles east of N East B Street to Oregon state line	Modoc	23.3	Modoc	61.6	38.3

A map showing the location of the nine segments is located on the next page.

ROUTE PERFORMANCE

Level of Service

Level of Service (LOS) is a qualitative measure used to analyze highway performance and to describe operating conditions within a traffic stream, generally in terms of such service measures as speed and travel time, freedom to maneuver, traffic interruptions, and comfort and convenience. Six levels are defined for each type of facility analyzed. Letters designate each level, from "A" to " F ", with LOS "A" representing the best operating conditions and LOS " F " the worst.

Route Performance Table

The Performance Table below provides current and future volume and LOS information for US 395. See Appendix I for further description of the methodology used for LOS determinations. See Appendix J for details of the traffic forecast.

Current Year 2015								Future Year 2035					
	$\stackrel{\llcorner }{4}$				\sum_{Δ}^{E}	On		$\stackrel{\vdash}{\gtrless}$				$\sum_{\text {® }}^{\text {E }}$	00
1	9000	1400	816	275	69651	A	15	9300	1447	843	284	71973	A
2	5800	550	1072	888	146409	C	12	6040	573	1116	925	152468	C
3	5600	720	768	589	141904	C	10	5800	746	795	610	146972	C
4	7300	710	758	578	43172	C	15	7600	739	789	602	44946	C
5	3650	390	319	218	33726	B	7	3790	405	331	226	35020	C
6	$\begin{gathered} 1400- \\ 830 \end{gathered}$	180	329	284	$\begin{gathered} 96058- \\ 56949 \end{gathered}$	B	3	$\begin{gathered} 1460- \\ 890 \end{gathered}$	188	343	296	$\begin{gathered} 100175- \\ 61066 \end{gathered}$	B
7	$\begin{aligned} & 780- \\ & 1050 \end{aligned}$	120	271	224	$\begin{aligned} & 16358- \\ & 22021 \end{aligned}$	B	5	$\begin{aligned} & 880- \\ & 1150 \end{aligned}$	131	306	253	$\begin{aligned} & 18455- \\ & 24118 \end{aligned}$	B
8	5700	620	282	191	8601	C	7	5840	635	289	196	8813	C
9	$\begin{gathered} 2800- \\ 700 \end{gathered}$	170	124	70	$\begin{gathered} 107136- \\ 26784 \end{gathered}$	B	5	$\begin{gathered} 2900- \\ 800 \end{gathered}$	176	128	73	$\begin{gathered} 110963- \\ 30610 \end{gathered}$	B

${ }^{1}$ Differential speed limit (55 mph for trucks and 65 mph for passenger vehicles) is not accounted for in LOS determination.

Legend:

AADT - Annual Average Daily Traffic
PH - Peak Hour Volume, in both directions
Total Trucks - Total Truck Count
5+ Axle Trucks - Number of trucks with five or more axles
DVMT - Daily Vehicle Miles Traveled. Number of miles traveled daily on segment (AADT x Center Line Miles)
LOS - Level of Service during the peak hour.
AADT Growth Rate - The annual projected traffic growth rate expressed as "number of vehicles per year"

Concept LOS CID Threshold

Caltrans District 2 seeks to implement improvements on US 395 when LOS is projected to fall below LOS C. This improvement standard is commonly referred to as the "C/D' Threshold". When a segment is forecast to fall to LOS D, then improvements should be considered.

The Concept LOS for US 395 within District 2 is the C/D Threshold.

US 395 meets concept LOS now and in the future.

Interstate 11: A Long-Term Planning Consideration

In the Moving Ahead for Progress in the 21st Century Act (MAP-21), congress designated the US 93 corridor between Phoenix and Las Vegas as future Interstate 11 (I-11). In the 2015 Fixing America's Surface Transportation Act, or "FAST Act," congress extended the future l-11 north from Las Vegas to Reno by designating it as a High Priority Corridor on the National Highway System. No funding is set aside for the Las Vegas to Reno section, but prioritizing it increases the chances of obtaining federal funding in the future.

From 2012 to 2014, The Arizona Department of Transportation (ADOT) and Nevada Department of Transportation (NDOT) developed the I-11 and Intermountain West Corridor Study which included detailed corridor planning from Phoenix to Las Vegas. The study also included high-level visioning for extending the corridor north to Canada and south to Mexico. The initial screening process resulted in two alternatives north of Las Vegas for future study. One of the alternatives crosses into northeastern California and appears to follow the existing US 395 corridor and could include other California State Highways.

If there is a need for $1-11$ to extend north of Reno, then further studies will be conducted to select the best alignment. If any portion of US 395 in District 2 is designated and subsequently developed as an extension of l-11, then route performance and future concept will change. This TCR is written based on the assumption that US 395 in District 2 will not be designated as part of l-11 within the next 20 years. At this time, it is unknown when or if development of the Reno to Canada corridor will occur and funding has not been identified to pursue its development.

ROUTE CONCEPT

Route Concept (also known as Facility Concept) is a general term used to describe the intended number of through travel lanes and degree of access control for the entire route. The Route Concept provides an overall vision for the route to assist Caltrans and other agencies with current and future planning for US 395.

The existing route is a two-lane conventional highway. The route concept established for 2035 in this TCR is as follows:

US 395 Route Concept (20-Year)
 SIE R0.0-LAS R61.1: 4-Lane Divided Expressway LAS R61.1-MOD 61.6: 2-Lane Conventional Highway

Projects, actions and strategies necessary to achieve a 20-Year Route Concept that differs from the existing highway configuration (such as the expansion from two lanes to four lanes between LAS R4.6 - LAS R61.1 and the possible reduction from four lanes to two in Alturas between MOD R21.0-22.8) are discussed in the following section: Major Management Actions. All other potential projects, actions and strategies for the remainder of US 395 (including those that could provide value if implemented in the interim in the above areas) are included in the Segment Fact Sheets beginning on page 43 .

Major Management Actions

UPGRADE TO FOUR-LANE DIVIDED EXPRESSWAY - HALLELUJAH JUNCTION TO CITY OF SUSANVILLE (LAS R4.6-R61.1):

Factors Supporting Action:

- Expansion to a four-lane divided expressway has been the concept since the 1980's.
- There is significant public and agency support within Lassen County for expansion to a four-lane divided expressway.
- This portion of US 395 is a key part of the high priority networks for movement of people and freight within and through northern California.
- A four-lane divided expressway should provide significant safety benefits during both construction (separation of workers from traffic) and future operation (this facility type typically outperforms others in California in the 5,000-15,000 AADT range).
- Expansion to four-lane divided expressway will provide excellent performance (Level of Service).
- A four-lane expressway and accompanying intersection consolidations/improvements will significantly improve operations in the corridor.

Appendix K contains a summary comparison of four options: no action, passing lane package, contiguous four-lanes, four-lane divided expressway.

Key Challenges to Implementation:

- It will take multiple decades of ongoing, consistent commitment and action by all levels of government (federal, state, local) and area residents to achieve 50 -plus miles of new four-lane divided expressway.
- The level of funding needed to achieve a four-lane divided expressway exceeds reasonably foreseeable revenue.
- ITIP
- RTIP
- SHOPP
- Competitive (non-formula programs)

Actions that may be considered under existing guidance/policy:

- Access management (see Appendix L for further information), including maintenance of existing access control and careful consideration of encroachment permits.
- Use the "US 395 Expressway Impact Checklist" (see Appendix M) during review and development of every future transportation and land use project along US 395 between SR 70 and SR 36. The checklist encompasses topics for consideration such as:

Access point consolidation
Driveway closures

- Purchase of access control
- Right-of-way acquisition
- Frontage road construction
- Location of utilities within the right of way
- Proximity to existing or proposed future communities
- Wildlife crossings
- Mitigation sites
- Utilize innovative rehabilitation strategies such as the "Local Partner - Safety Focused Rehab" (see Appendix N).
- Do not build traditional passing lanes - achieve passing opportunities through development of "Expressway Passing Segments" (see Appendix O).

Actions that may require a longer time-frame and/or additional steps to achieve:

- As a possible interim measure while working toward the four-lane divided expressway, consider the potential safety and operational benefits of implementing a universal speed limit along US 395 (see Appendix P).
- Develop a partnership between Caltrans, Lassen County and the SIAD to explore various traffic management options such as staggered work shifts, freight delivery windows and innovative (non-traditional) sources of funds for highway improvements.
- Update the Lassen County General Plan to include specific policies and standards regarding development along and within the US 395 corridor (see Appendix Q).
- Update RTP to include specific policies and standards pertaining to upgrading US 395 to a four-lane expressway (see Appendix R).
- Identify project team and funding to update and finalize the draft Honey Lake Expressway Study.
- This study will develop more refined concept features, including facility layout, typical sections, right-of-way needs, staging areas, alignment near communities, frontage road locations, intersection/interchange locations and spacing, and animal crossings.
- The community should be taken into consideration and study should reflect sensitivity to business and resident concerns.
- Seek funding for corridor-level mitigation and environmental management.
- Pursue competitive funding programs including, but not limited to:
- Congressional High Priority Program

TIGER

- Fast Act
- Congested Corridor (SB1)
- Freight Program (SB1)

IMPLEMENT TRAFFIC CALMING MEASURES IN THE CITY OF ALTURAS (MOD R21.022.8):

Factors Supporting Action:

- Four lanes are not required to maintain concept LOS.
- Two lanes with two-way turn lane, turn channelization and improved pedestrian and bicycle facilities can improve operations.
- Enhanced safety for bicyclists and pedestrians.
- It is a regional priority to improve active transportation in Alturas.

Key Challenges to Implementation:

- Implementation is likely to only be triggered when another project, such as re-paving is planned in Alturas.
- Traffic calming improvements will likely require some local participation in funding, such as STIP, city funds, etc.
- There may be resistance to change from some community members.

Possible actions to be taken:

Traffic calming features could include, but are not limited to, the following:

- Traffic signals
- Additional signage (speed, crosswalk, bike, etc.)
- Bulb-outs
- Bike lanes
- Thermoplastic decorative treatments in crosswalks
- Road diet (lane reduction)

SEGMENT FACT SHEETS

Fact Sheet for Segment Number 1

County:	Sierra/Lassen	Route:	395	Post Mile Limits	SIE R0.0/ LAS R4.6
Location:	Nevada state line to junction SR 70		Segment Length in miles	7.739	

CURRENT HIGHWAY INFORMATION			
Number of Lanes:	4	Percent Trucks:	9%
Terrain:	Rolling	Percent 5-Axle Trucks:	78%
Lane Width:	12 feet	Average Treated Shoulder:	10 feet

SYSTEM DESIGNATIONS	BICYCLE STATUS
Functional Classification: Principal Arterial	Allowed

Other Classifications	State Highway System; Interregional Road System; High Emphasis Route; Strategic Interregional Corridor; Freeway \& Expressway System; National Highway System; Strategic Highway Network; Terminal Access (STAA); California Freight Mobility Plan (CFMP) Tier III; Blue Star Memorial Highway; Three Flags Highway		
	Route Concept	Segment Concept	
Present:	4 E		
20 -Year:	4 E	4 E	

TRAFFIC VOLUMES AND LEVEL OF SERVICE (LOS)			
Year	Peak Hour (PH)	Annual Average Daily Traffic (AADT)	Level of Service (LOS)
2015	1400	9000	A
2035	1447	9300	A
Caltrans, District 2, Office of System Planning and Traffic Census			

Segment Information

US 395

Segment Number
PM Limit SIE R0.0 to LAS R4.6
Segment Description
Segment 1 begins at the Nevada state line and ends at the junction with SR 70, which is also called "Hallelujah Junction." The entire segment is a four-lane expressway with 12 -foot lanes, 10 -foot outside treated shoulders and five-foot inside treated shoulders and operates at LOS A. The posted speed limit is 65 mph . Travel along this section consists of commuter traffic during morning and afternoon peak hours, commercial goods movement and travel for recreational purposes. In addition, some residents of northeastern California use US 395 to get to and from Reno for medical appointments and other errands. The highest AADT along the entire route is along Segment 1. Daily truck volumes along this segment are around 800.

Meandering roughly parallel to US 395 are a portion of the California National Historic Trail (from Nevada to LAS 0.9) and Long Valley Creek (from Nevada to LAS R17.6).

Just east of the California/Nevada state line are the Bordertown Casino and Cold Springs, a residential subdivision with a population of 8,500 . According the 2014 update to the Washoe Freeway Corridor Study, there are no capacity projects planned for US 395 east of the state line in Nevada. That section of the highway operates at LOS A.

From south to north, there are a couple of locations where vehicles informally cross between the northbound and southbound lanes, however, official crossovers with left turn lanes are located at SIE R2.4, LAS R2.0. Informal crossovers are located just west of the state line, SIE R1.3, SIE R1.9, SIE R3.1, LAS R0.2, LAS R1.1, LAS R2.7, LAS R3.0, LAS R4.2 and LAS R4.5.

One of the crossovers, Bringman Road (LAS R2.0), is located just north of Long Valley Agricultural Inspection Station (LAS R1.5). To the west, Bringman Road leads to a couple of small houses and farms.

Deer fencing is currently installed near Hallelujah Junction. Under-crossings for deer, cattle, agricultural equipment and streams are located at the Long Valley Undercrossing (SIE R2.2), the Evans Canyon Undercrossing (LAS R0.1) and the Scott Undercrossing (LAS R1.1).

There are a gas station with a mini-market and freeway on- and off-ramps located at the end of Segment 1 at LAS 4.6.

Chain control areas are located in the northbound direction at the Nevada border and in the southbound direction at LAS 4.4, just south of Hallelujah Junction. This portion of the highway is maintained by the Beckwourth maintenance crew. A sand and salt storage facility is located just south of the SR 70 junction, at LAS 3.6.

Segment Considerations

- Snow and ice on highway at times.
- SIE R0.511R: trucks pull over-wide unpaved area.
- Increase in elk and big horn sheep crossing near Bordertown.
- Vehicles are delayed by having to slow down for the agricultural inspection station.
- Informal crossovers between northbound and southbound lanes (SIE R1.3, SIE R1.9, SIE R3.1, LAS R0.2, LAS R1.1, LAS R2.7, LAS R3.0, LAS R4.2 and LAS R4.5).
- LAS R1.5-R61.6: Periods of high winds can close US 395 to all high profile vehicles.
- Rumble strips along the shoulder.
- Agricultural vehicles along the highway at times, primarily from April to October.
- Portions of the highway in Segment 1 pass through Greater Sage-Grouse habitat management areas.

Segment Management

- Consider developing a rest area near the SR 70 junction or near the agricultural inspection station.
- Support external agency efforts to develop a formal transit stop near the Hallelujah Junction for transfers involving coordination among Sage Stage, Plumas Transit and RTC Public Transportation Washoe.
- Consider providing highway crossings for all user groups, for example; agricultural, pedestrian and vehicle; in rural communities along the route, or where trails intersect the highway.
- Continue the improved mowing along the sides of the highway which helps drivers see deer, deer see vehicles and helps to prevent fires. When mowing, get the older, larger sage brush as well.
- Consider installing wildlife over- or under-crossings along migratory routes that cross US 395. Continue to repair existing wildlife crossings and fences, as necessary.
- Consider using "major deer crossing area ahead" signs in areas with a lot of deer.
- Explore opportunities to eliminate need for passenger vehicles to stop at the agricultural inspection station (LAS R1.5).
- Consider the use of signs to warn drivers of unexpected closures on US 395.
- Consider installing agricultural vehicle warning signs in areas with significant agricultural activity.
- Maintain existing HAR and HAR Flashers facing both directions at LAS 1.7
- Maintain existing CCTV at Hallelujah Junction (LAS 4.6).
- Continue coordinating with Nevada DOT on CMS signs on US 395 just east of the California/Nevada state line

Fact Sheet for Segment Number 2
US 395 TCR

County:	Lassen	Route:	395	Post Mile Limits	R4.6/29.8
Location:	Junction SR 70 to Garnier Road	Segment Length in miles	25.243		

CURRENT HIGHWAY INFORMATION			
Number of Lanes:	$4-2$	Percent Trucks:	18%
Terrain:	Rolling to Level	Percent 5-axle Trucks:	83%
Lane Width:	12 feet	Average Treated Shoulder:	$4-10$ feet

SYSTEM DESIGNATIONS	BICYCLE STATUS
Functional Classification: Principal Arterial	Allowed

Other Classifications	State Highway System; Interregional Road System; High Emphasis Route; Strategic Interregional Corridor; Freeway \& Expressway System; National Highway System; Strategic Highway Network; Terminal Access (STAA); CFMP Tier III; Blue Star Memorial Highway; Three Flags Highway

	Route Concept	Segment Concept
Present:	$2 C / E$	$2 C / E$
20 -Year:	4 E	4 E
Concept Level of Service		C/D Threshold

TRAFFIC VOLUMES AND LEVEL OF SERVICE (LOS)					
Year	Peak Hour (PH)	Annual Average Daily Traffic (AADT)	Level of Service (LOS)		
2015	550	5800	C		
2035	573	6040	C^{*}		
Caltrans, District 2, Office of System Planning and Traffic Census					

Segment Information

Segment Description

Segment 2 begins at the SR 70 junction, also known as "Hallelujah Junction," and ends at County Road A-26, also called Garnier Road. This segment is mostly two-lane conventional/expressway with 12 -foot lanes and varying shoulder widths of at least four feet. The posted speed limit is 55 mph for trucks and 65 mph for other vehicles. Truck volumes just north of the SR 70 junction are 1,070, which are the highest truck volumes along the route.

Travel along US 395 within this segment consists of commuters, recreational travelers, interregional goods movement, military transports to and from the Sierra Army Depot (SIAD), and travel by residents of northeastern California to Reno for errands, appointments and shopping. Occasionally, agricultural vehicles enter the highway, as indicated by tractor warning signs, such as the one at LAS 6.7.

The most significant trip generator along the route is SIAD, adjacent to the community of Herlong (five miles from US 395, via Garnier Road). In the morning, during the peak hour, there are heavy traffic flows northbound from Nevada to Garnier Road (A-26), which is one of two roads from US 395 to get to SIAD. In the afternoon, the primary direction of travel along this segment is southbound to Nevada. Also adjacent to Herlong is the Federal Correctional Institution (FCI Herlong), another generator of US 395 trips.

There are two informal park and ride locations within this segment which some commuters to SIAD and FCI Herlong use. Those locations include the market at Hallelujah Junction and a dirt lot at Red Rock Road (LAS 14.3).

Approximately 55% of the segment is striped for passing. Passing lanes within this segment are located at LAS 9.0-10.0 (NB), LAS 11.7 R10.3 (SB), LAS 26.6-27.6 (NB) and LAS 29.8-28.8 (SB). Some sections of the segment have centerline buffer zones with rumble strips.

Table 12: Turn Lanes (Segment 2)		
LAS 9.9	Dirt road to Pozzolan Mine	Left turn lane (NB)
LAS 14.3	Red Rock Road	Right turn lane (NB) and left turn lane (SB)
LAS R16.0	Scott Road	Right turn lane (SB)
LAS R17.4	Constantia Road	Right turn lane (SB)
LAS R22.0	Hall Road (W) and Bert Road (E)	Right turn lanes (NB \& SB)
LAS R23.1	Constantia Road (W) and Doyle Loop (E)	Right turn lanes (NB \& SB) and left turn lanes (NB \& SB)
LAS R24.2	Doyle Grade Road	Right turn lanes (NB \& SB) and left turn lanes (NB \& SB)
LAS R24.5	Doyle Loop	Left turn lane (SB)
LAS 25.2	Riverview Drive	Left turn lane (SB)
LAS 25.3	Carol Drive/Old Highway 395	Right turn lane (SB) and left turn lane (NB)
LAS 25.6	Rachel Drive	Right turn lane (SB) and left turn lane (NB). An additional left turn lane is just to the south in the southbound direction into private property
LAS 26.6	Laver Crossing	Right turn lane (NB)
LAS 29.8	Garnier Road (A26)	Right turn lane (NB) and left turn lane (SB)

There are seven bridges and highway structures along this segment over which the highway passes water routes; deer, cattle and agricultural equipment crossings; and the railroad at Doyle Overhead. The locations of the structures include LAS 15.8 (Long Valley Creek), LAS 17.5 (Galeppi UC), LAS R21.3 (Long Valley Creek Overflow), LAS R23.0 (Doyle Overhead), LAS R24.7 (Willow Ranch Creek) and LAS 26.2 \& 28.0 (Long Valley Creek).

Chain control areas are located in the northbound direction just north of Hallelujah Junction (LAS 4.8) and at Red Rock Road (LAS 14.3). In the southbound direction, they are located just south of Red Rock Road (LAS 14.0) and just north of Doyle (LAS 24.8).

The landscape is high desert and land use is mostly open space, agricultural and rural residential. Red Rock Road (LAS 14.3) connects to the highway from residential subdivision in Nevada called "Rancho Haven." Rancho Haven is located less than two miles east of US 395. There are several vacant lots for sale within the subdivision which could be developed in the future, potentially increasing traffic volumes along US 395 in the future.

The route passes through the community of Doyle (approximately LAS R23.2-26.0), with its main street, Doyle Loop, being the former US 395 highway alignment. Doyle was settled in 1907 following the establishment of the Doyle train station by the Nevada, California \& Oregon Railroad. Today, it is a small rural community with residences, a school, a community park, senior/community center, forest service station, bar, emporium, RV/ mobile home parks, gas station. According to the Draft Lassen County Area Plan Update, community members want compact commercial and civic growth in the town center area.

Sage Stage transit has a stop in Doyle at the Shell Station along its Alturas to Reno line. The stop is only provided for travel in the southbound direction, according to the Sage Stage website. Lassen Rural Bus has stops in Doyle along Doyle Loop, and off-route in Herlong.

North of Doyle is Laver Crossing (LAS 26.6) which leads to the Doyle Wildlife Area and the Fort Sage Special Recreation Management Area, an area popular for off-highway vehicles.

Segment Considerations

Commute Traffic, Differential Speed Limit and Passing

- The differential speed limit of 55 mph for trucks and 65 miles per hour for passenger cars results in backups behind trucks and increases the demand for passing. Drivers sometimes do not follow passing laws.
- Some community members expressed that they did not feel comfortable passing along some sections currently striped for passing.
- Heavy truck, military and commute traffic to and from Garnier Road (A26) leading to SIAD and FCI Herlong, especially during the morning and afternoon peaks. Queues form in the afternoon along Garnier Road due to predominately left turns onto southbound US 395.
- Numerous vehicles exceeding the posted speed limit, particularly commuters.
- Residents living near US 395 in the Doyle area have expressed concern about noise from commute traffic along US 395.

Weather

- Snow and ice on highway at times, which can result in closures for trucks.
- Periods of high winds can close US 395 from the Nevada state line to the SR 36 junction to all high profile vehicles.
- Flooding can be an issue during seasons with heavy precipitation (highway was closed one night in January 2017 from Hallelujah Junction to Laver Crossing, LAS 4.6-26.59)
- Blocked culverts near Doyle can sometimes be a cause of flooding along US 395.

Intersections

- No street sign or left turn pocket in the northbound direction for the Scott Road (LAS R15.97) intersection.
- Community members commented that the left turn lane at the north end of Constantia Road (LAS R23.1) might be too short and narrow.
- There is a small street name sign and no northbound left turn pocket at the southern connection of Constantia Road (LAS R17.4).
- There is no signage in the northbound or southbound direction at the southern connection of Riverview Drive (LAS R24.8).
- No southbound left turn pocket at Laver Crossing (LAS 26.6). Community members wanting to turn left onto Laver Crossing from southbound US 395 sometimes pull over on the right shoulder to wait for traffic behind them to pass.
- The Cowboy Joe Road (LAS 28.5) intersection is on a grade close to the crest. The intersection is skewed and there are no turn pockets.
- Northbound right turn pocket at Garnier Road (A-26, LAS 29.8) might be too short.

Other

- Multiple private driveways. Cars pull out onto US 395 and accelerate from slow speeds. Cars slow down in order to turn onto private driveways.
- Illegal dumping of trash and RV black water at the "shoe tree" (LAS 7.7).
- Less than eight foot shoulders in some locations.
- Rumble strips along the shoulder could impede bicycle travel.
- Deer along highway, particularly during migration periods. At night time, they can be difficult to see against the headlights of oncoming vehicles.
- Sometimes street lights at the northern intersection with Doyle Loop can be out of service.
- Residents who live close to the highway are concerned about their properties if the highway is expanded or re-aligned.
- Agricultural vehicles along the highway at times, primarily from April to October.
- Portions of the highway pass through Greater Sage-Grouse habitat management areas

Segment Management

Specific Locations
When projects are developed, consider the benefit of installing turn pockets and/or upgrading street signs at intersections with US 395, and in particular, the following improvements:

- Consider turn pockets and street signs for the Scott Road (LAS R15.97) intersection.
- At the southern connection with Constantia Road (LAS R17.4), consider installing a northbound left turn lane and replacing the existing small street sign with a larger one.
- Consider lengthening and widening the northbound left turn lane at the north end of Constantia Road (LAS R23.1).
- Consider placing the northbound sign for Doyle Loop (LAS R23.1) further in advance to provide more time to slow down for the turn.
- Consider installing street signage facing both directions at the southern connection of Riverview Drive (LAS R24.8).
- Consider installing a southbound left turn pocket at Laver Crossing (LAS 26.6)
- Consider turn pockets and/or reconfiguration of the skewed intersection at Cowboy Joe Road (LAS 28.5).
- Consider lengthening the northbound right turn pocket at Garnier Road (LAS 29.8).
- Consider the opportunity to widen the section between Constantia Road (LAS R17.4) and Doyle (LAS R23.1) to a four-lane divided expressway because of favorable terrain and existing pavement widths.

ITS and Other Traveler Information

- Maintain existing RWIS and CCTV at LAS 21.9 in Doyle.
- Consider installing signs with blinking lights at A-26 (LAS 29.8), to caution drivers along US 395 during heavy commute times.
- Consider installing additional high wind signs and HAR Flashers.
- Consider the use of signs to warn drivers of unexpected closures on US 395.

Commute Travel Management

- Coordinate with external agencies such as SIAD, Lassen County and the prisons to expand the use of carpooling.
- Coordinate with external agencies to establish formal park and ride lots. Consider security of vehicles and other property while planning the lots, particularly if one is to be developed at the A3/US 395 junction (LAS 51.9).
- Coordinate with SIAD to stagger employee start and end times.

Deer

- Continue the improved mowing along the sides of the highway which helps drivers see deer, deer see vehicles and helps to prevent fires. Mow the older, larger sage brush as well.
- Consider installing wildlife over- or under-crossings along migratory routes that cross US 395. Continue to repair existing wildlife crossings and fences, as necessary.
- Consider using "major deer crossing area ahead" signs in areas with a lot of deer.

Other

- Consider installing more signage notifying drivers of passing lanes ahead.
- Consider providing highway crossings for all user groups, for example; agricultural, pedestrian and vehicle; in rural communities along the route, or where trails intersect the highway.
- Consider options to minimize noise impacts to residents living in the Doyle area.
- Continue coordinating with power companies that maintain street lights along US 395, such as Plumas Sierra Rural Electric.
- Explore opportunities to inform motorists that the "turn on headlights" signs are regulatory and consider installing more signs along the route.
- Consider installing agricultural vehicle warning signs in areas with significant agricultural activity.
- Achieve standard shoulder widths.
- During future projects, consider the impact of rumble strips on cyclists.
- During development of future projects along US 395 between LAS R4.6 and LAS R61.1, complete the "US 395 Four-Lane Divided Expressway Impact Checklist." See Appendix M for checklist.

Fact Sheet for Segment Number 3

County:	Lassen	Route:	395	Post Mile Limits	$29.8 / 55.2$
Location:	Garnier Road to Janesville Road	Segment Length in miles	25.340		
CURRENT HIGHWAY INFORMATION					
Number of Lanes:	2	Percent Trucks:	16%		
Terrain:	Rolling to Level to Rolling	Percent 5-axle Trucks:			
Lane Width:	12 feet	Average Treated Shoulder:	47% feet		

SYSTEM DESIGNATIONS	BICYCLE STATUS
Functional Classification: Principal Arterial	Allowed

TRAFFIC VOLUMES AND LEVEL OF SERVICE (LOS)			
Year	Peak Hour (PH)	Annual Average Daily Traffic (AADT)	Level of Service (LOS)
2015	720	5600	C
2035	746	5800	C^{*}
Caltrans, District 2, Office of System Planning and Traffic Census			
*LOS A if improved to four-lane expressway			

Segment Information

Segment Description

Segment 3 begins at Garnier Road (A26) and ends at Janesville Road, which is toward the northern end of Janesville. This segment is two-lane conventional/expressway with 12 -foot lanes and treated shoulder widths of four to eight feet. The posted speed limit is 55 mph for trucks and 65 mph for other vehicles. Travel along this segment consists of interregional and intraregional goods movement, commute traffic, recreational travelers and errand/appointment traffic to Susanville or Reno.

Peak hour volumes are heavily influenced by commute traffic. Commute traffic along Segment 3 consists of residents of Susanville and other communities such as Janesville, Milford and Johnstonville on their way to work at SIAD, FCI Herlong or the prisons located just north of the SR 36 junction, or businesses or offices in Susanville. Herlong Access Road (A25) is the primary route for Lassen County residents traveling to SIAD and FCI Herlong. Since commute traffic from the Susanville area to SIAD uses A25, there is very little commute traffic between A25 and A26 (LAS 29.8-34.8).

Standish-Buntingville Road (A3, LAS 51.9) connects US 395 in Buntingville to US 395 in Standish. Taking this short cut eliminates the need to travel to the SR 36/US 395 junction and saves 10 miles, or approximately 10 minutes. There is a 65 foot truck limit on A3. Some Sherwin Williams trucks, among others, are within the limit and they frequently use A3 as a cutoff.

Approximately 60% of the segment is striped for passing. Passing lanes within this segment are located at LAS 35.1-36.3 (NB), LAS 41.4-40.5 (SB), LAS 46.0-46.7 (NB), LAS 49.8-48.9 (SB) and LAS 54.3-55.4 (NB).

Table 13: Turn Lanes (Segment 3)		
LAS 34.5	Herlong Access Road (A25)	Right turn lane (NB) and left turn lane (SB)
LAS 34.8	Tucker Road	Left turn lane (NB)
LAS 35.1 34.8	Tucker Road	Right turn lane (SB)
LAS 34.9-35.0	Just north of Herlong Junction	Center left turn lane
LAS 38.5	Flux Road	Right turn lane (SB)
LAS 41.8	Milford Grade	Right turn lane (SB) and left turn lane (NB)
LAS 48.8	Lakecrest Road (CR 353)	Right turn lane (NB) and left turn lane (SB)
LAS 49.5	Honey Lake Rest Area	Right turn lane (NB) and left turn lane (SB)
LAS 50.3	Hicks Road	Left turn lanes (NB \& SB)
LAS 51.9	Standish Buntingville Road (A3)	Right turn lane (NB) and left turn lane (SB)
LAS 52.7	Janesville Road	Right turn lane (SB) and left turn lane (NB \& SB)
LAS 53.1	Sears Road (CR 209)	Right turn lane (NB \& SB) and left turn lane (NB \& SB)
LAS 54.1	Church Street	Right turn lane (NB \& SB) and left turn lane (NB \& SB)
LAS 55.2	North junction Janesville Road	Right turn lane (SB) and left turn lane (NB \& SB)

There are three informal and one formal park and ride located along this segment. The formal park and ride at LAS 52.6 in Janesville is the only formal park and ride located along US 395. The informal gravel park and ride locations are at A25 (LAS 34.5), Milford (LAS 42.3) and Hicks Road (LAS 50.4). Lassen Rural Bus has stops in Milford, at the Janesville Park \& Ride and in Janesville along Main Street (off-route).

Honey Lake Rest Area (LAS 49.5) is the southernmost of two rest areas located along US 395. North of the Honey Lake Rest Area are mini weigh station sites at LAS 49.8 and a chain control area in the southbound direction (LAS 50.6).

Like Segments 1 and 2, Segment 3 is in a high desert setting. A few farms and ranches are along the route with density of development increasing in the vicinity of communities. Honey Lake is a large alkaline lake located just east of US 395 and provides important migratory bird nesting and brood-rearing habitat.

From south to north, there is a small community located at Herlong Junction (LAS 34.8) with a few residences and a gas station. According to the Draft Lassen County Area Plan Update, Herlong Junction has been identified for improvement and expansion of highway-traveler-oriented commercial services, but to not establish a new town center.

The community of Milford, with a population of about 70 is spread over about a mile near LAS 42.0. In the community are homes, a post office, a park and an RV park just to the north. Further to the west are horse ranches and the Plumas National Forest. Occasionally logging trucks pass through the area from the forest. Future development in the Milford area is constrained by water supply.

The community of Janesville, population 1,400, is located just west of the route at the northern end of Segment 3. The community is concentrated along Main Street, which is a loop road to the west of US 395 from LAS 52.655.2. The first structure in Janesville was a hotel built in the mid-19th century. In the 1970s, the pace of home construction increased, with many residents working in Susanville, SIAD, the prisons, or Reno. Janesville has an elementary school, pizza parlor, residences, businesses, community center, food mart, gas station, ball field and fire department. Little future development is expected in the Janesville area due to well, fire and septic constraints.

Segment Considerations

Commute Traffic, Differential Speed Limit and Passing

- The differential speed limit of 55 mph for trucks and 65 miles per hour for passenger cars results in backups behind trucks and increases the demand for passing. Drivers sometimes do not follow passing laws.
- Some community members expressed that they did not feel comfortable passing along some sections currently striped for passing.
- Heavy truck and commute traffic to and from Herlong Access Road (A26) leading to SIAD and FCI Herlong, especially during the morning and afternoon peaks.
- Numerous vehicles exceeding the posted speed limit, particularly commuters.

Weather

- Snow and ice on highway at times, which can result in closures for trucks.
- Periods of high winds can close US 395 from the Nevada state line to the SR 36 junction to all high profile vehicles.
Other
- Multiple private driveways. Cars pull out onto US 395 and accelerate from slow speeds. Cars slow down in order to turn onto private driveways.
- Less than eight foot shoulders in some locations.
- Rumble strips along the shoulder could impede bicycle travel.
- Deer along highway, particularly during migration periods. At night time, they can be difficult to see
against the headlights of oncoming vehicles.
- Residents who live close to the highway are concerned about their properties if the highway is expanded or re-aligned.
- Informal park and rides along the route.
- Honey Lake Fault is east of US 395 between Doyle and Janesville (on 8/4/16, 4.0 and 4.5 magnitude earthquakes occurred with the epicenters just northeast of US 395 [LAS 33.6], and just southeast of Honey Lake).
- Prolonged closure of Honey Lake Rest Area for maintenance and upgrades can pose an inconvenience for travelers and local business-owners.
- Closing the Honey Lake Rest Area at the same times as the Secret Valley Rest Area can be an inconvenience for travelers.
- Neither the Lassen County Transportation Commission (LCTC) nor community members support the use of A3 as a short cut between Buntingville (LAS 51.9) and Standish (LAS 70.1). The LCTC is concerned about excessive wear on the road if it were to be designated for trucks. Community members do not want an increase in traffic.
- Vandalism and other security concerns at the park and ride in Janesville (LAS 52.6).
- Agricultural vehicles along the highway at times, primarily from April to October.

Segment Management

ITS and Other Traveler Information

- Maintain existing HAR Flasher at Buntingville Road (LAS 51.7) and CCTV and HAR Flasher at Sears Road (LAS 53.1) in Janesville.
- Consider installing additional high wind signs and HAR Flashers.
- Consider the use of signs to warn drivers of unexpected closures on US 395.

Commute Travel Management

- Coordinate with external agencies such as SIAD, Lassen County and the prisons to expand the use of carpooling.
- Coordinate with external agencies to establish formal park and ride lots. Consider security of vehicles and other property while planning the lots, particularly if one is to be developed at the A3/US 395 junction (LAS 51.9).
- Coordinate with SIAD to stagger their employee start and end times.

Deer

- Continue the improved mowing along the sides of the highway which helps drivers see deer, deer see vehicles and helps to prevent fires. Mow the older, larger sage brush as well.
- Consider installing wildlife over- or under-crossings along migratory routes that cross US 395 . Continue to repair existing wildlife crossings and fences, as necessary.
- Consider using "major deer crossing area ahead" signs in areas with a lot of deer.

Other

- Consider installing more signage notifying drivers of passing lanes ahead.
- Consider providing highway crossings for all user groups, for example; agricultural, pedestrian and vehicle; in rural communities along the route, or where trails intersect the highway.
- Explore opportunities to inform motorists that the "turn on headlights" signs are regulatory and consider installing more signs along the route.
- Support Lassen County and other agencies' efforts to prevent vandalism and other security concerns at the park and ride in Janesville (LAS 52.6).
- Try not to close the Honey Lake and Secret Valley Rest Area at the same time.
- Consider strategies to decrease cut-through traffic along Standish-Buntingville Road.
- Consider installing signs with blinking lights at A-25 (LAS 34.5) to caution drivers along US 395 during heavy commute times.
- Consider installing agricultural vehicle warning signs in areas with significant agricultural activity.
- During closures of the Honey Lake Rest Area, consider providing alternative facilities and using a CMS to inform drivers of the closure.
- Support Lassen LTC's efforts to develop a Visitor Information Center at the US 395 Honey Lake Rest Area (Lassen RTP).
- Achieve standard shoulder widths.
- During future projects, consider the impact of rumble strips on cyclists.
- During development of future projects along US 395 between LAS R4.6 and LAS R61.1, complete the "US 395 Four-Lane Divided Expressway Impact Checklist." See Appendix M for checklist.

Fact Sheet for Segment Number 4

County:	Lassen	Route:	395	Post Mile Limits	$55.2 / R 61.1$
Location:	Janesville Road to junction SR 36	Segment Length in miles	5.914		

CURRENT HIGHWAY INFORMATION			
Number of Lanes:	2	Percent Trucks:	10%
Terrain:	Rolling	Percent 5-axle Trucks:	77%
Lane Width:	12 feet	Average Treated Shoulder:	$4-8$ feet

SYSTEM DESIGNATIONS	BICYCLE STATUS
Functional Classification: \quad Principal Arterial	Allowed

Other Classifications	State Highway System; Interregional Road System; High Emphasis Route; Strategic Interregional Corridor; Freeway \& Expressway System; National Highway System; Terminal Access (STAA); CFMP Tier III; Blue Star Memorial Highway; Three Flags Highway		
	Route Concept	Segment Concept	
Present:	2 C/E	2 C/E	
$20-Y e a r: ~$	4 E	4 E	
Concept Level of Service		C/D Threshold	

TRAFFIC VOLUMES AND LEVEL OF SERVICE (LOS)			
Year	Peak Hour (PH)	Annual Average Daily Traffic (AADT)	Level of Service (LOS)
2015	710	7300	C
2035	739	7600	C^{*}
Caltrans, District 2, Office of System Planning and Traffic Census			
*LOS A if improved to four-lane expressway			

Segment Information

PM Limit LAS 55.2 to LAS R61.1

Segment Description

Segment 4 begins at Janesville Road, at the north end of Janesville, and ends at the signalized junction with SR 36. This segment is two-lane conventional/expressway with 12 -foot lanes and treated shoulder widths of four to eight feet. The posted speed limit is 55 mph for trucks and 65 mph for other vehicles. Travel along this segment consists of interregional and intraregional goods movement, commute traffic, recreational travelers and errand/ appointment traffic to Susanville or Reno.

Peak hour volumes are heavily influenced by commute traffic. Commute traffic along Segment 4 consists of residents of Susanville and other communities such as Janesville, Milford and Johnstonville on their way to work at SIAD, FCI Herlong or the prisons located just north of the SR 36 junction, or businesses or offices in Susanville

The highest volumes between SR 70 and SR 36 are within this segment. About 1300 vehicles per day turn on to and off of Janesville Road (LAS 55.3). At Janesville Road, AADT to the north is 7300 and to the south it is only 5600. Most Janesville traffic is oriented toward Susanville.

At the junction with SR 36, most traffic, passenger vehicles as well as trucks, continue westbound along SR 36 toward Susanville and destinations further west, as opposed to north along US 395 toward Standish and Litchfield.

Approximately 50% of the segment is striped for passing. Passing lanes within this segment are located at LAS 57.2-57.7 (NB) and LAS 58.0-57.4 (SB).

Table 14: Turn Lanes (Segment 4)		
LAS 56.3	Sunnyside Road	Right turn lane (NB) and left turn lane (SB)
LAS 57.6	Bass Hill Road	Left turn lane (NB)
LAS 58.3	Johnstonville Dump Road	Left turn lane (SB)
LAS R60.3	Diane Drive (west)/Airport Road (east)	Right turn lane (NB \& SB) and left turn lane (NB \& SB)
LAS R61.1	SR 36 Junction	Dedicated right turn lane (NB \& SB) and left turn lane (NB \& SB)

Land use is primarily agricultural and open space with very little development until just south of the SR 36 junction. Traveling north from Janesville Road, the route climbs over Bass Hill (LAS 57.6), which has a summer camp for boys and girls nearby. From there, the route descends and passes by the Johnstonville Dump (LAS 58.2), a permitted solid waste facility, along the east side of the highway. Further north, the density of houses, industrial facilities, government buildings and commercial establishments increases. The Susanville Airport, a regional airport, is located east of the route at LAS R60.3.

Residential development in the vicinity of the SR 36 junction is increasing, as Susanville expands to the east and within the Johnstonville area. According to the Draft Lassen County Area Plan Update, the future land use preference is to promote employment growth in the area surrounding the airport.

Across the highway from the airport and off-route a short distance is the Susanville Maintenance Station. The Johnstonville Commercial Vehicle Enforcement Facility "mini-site" is located at LAS 60.7, and there is a chain control location in the southbound direction at the SR 36 junction (LAS R61.1). There is an informal park and ride located at the SR 36 junction (LAS R61.1). Lassen Rural Bus service has a stop at the informal park and ride.

Segment Considerations

Commute Traffic, Differential Speed Limit and Passing

- The differential speed limit of 55 mph for trucks and 65 miles per hour for passenger cars results in backups behind trucks and increases the demand for passing. Drivers sometimes do not follow passing laws.
- Some community members expressed that they did not feel comfortable passing along some sections currently striped for passing.
- Heavy truck and commute traffic to and from Herlong Access Road (A26) leading to SIAD and FCI Herlong, especially during the morning and afternoon peaks. There is also commute traffic to Susanville and the prisons north of Johnstonville.
- Numerous vehicles exceeding the posted speed limit, including commuters.
- The Bass Hill Road intersection (LAS 57.6) has no right turn lane and the left turn lane could be longer. A community member expressed having difficulty seeing to the north and to the south when pulling out onto US 395 from Bass Hill Road.

Weather

- Snow and ice on highway at times, which can result in closures for trucks
- Periods of high winds can close US 395 from the Nevada state line to the SR 36 junction to all high profile vehicles.

Other

- Multiple private driveways. Cars pull out onto US 395 and accelerate from slow speeds. Cars slow down in order to turn onto private driveways.
- Less than eight foot shoulders in some locations.
- Rumble strips along the shoulder could impede bicycle travel.
- Deer along highway, particularly during migration periods. At night time, they can be difficult to see against the headlights of oncoming vehicles.
- Residents who live close to the highway are concerned about their properties if the highway is expanded or re-aligned.
- Informal park and ride at the junction with SR 36 (LAS R61.1).
- Agricultural vehicles along the highway at times, primarily from April to October.
- Rock slide area (LAS 57.2).
- A right turn lane to the dump might be needed (LAS 58.3).

Segment Management

ITS and Other Traveler Information

- Maintain existing HAR, HAR Flasher, CMS and CCTV (LAS 60.0-61.1).

Commute Travel Management

- Coordinate with external agencies such as SIAD, Lassen County and the prisons to expand the use of carpooling.
- Coordinate with external agencies to establish formal park and ride lots. Consider security of vehicles and other property while planning the lots.
- Coordinate with SIAD to stagger their employee start and end times.

Deer

- Continue the improved mowing along the sides of the highway which helps drivers see deer, deer see vehicles and helps to prevent fires. Mow the older, larger sage brush as well.
- Consider installing wildlife over- or under-crossings along migratory routes that cross US 395. Continue to repair existing wildlife crossings and fences, as necessary.
- Consider using "major deer crossing area ahead" signs in areas with a lot of deer.

Other

- Consider installing more signage notifying drivers of passing lanes ahead.
- Consider a right turn pocket (SB) and extending the left turn lane (NB) at Bass Hill Road (LAS 57.6).
- Consider a right turn lane to dump (LAS 58.3).
- Consider providing highway crossings for all user groups, for example; agricultural, pedestrian and vehicle; in rural communities along the route, or where trails intersect the highway.
- Explore opportunities to inform motorists that the "turn on headlights" signs are regulatory and consider installing more signs along the route.
- Develop additional truck parking areas in the vicinity of Susanville to accommodate trucks on US 395 during wind and other road closures.
- Modify at-grade intersection at the SR 36 \& US 395 junction.
- Consider installing agricultural vehicle warning signs in areas with significant agricultural activity.
- During closures of the Honey Lake Rest Area, consider providing alternative facilities and using a CMS to inform drivers of the closure.
- Achieve standard shoulder widths.
- During future projects, consider the impact of rumble strips on cyclists.
- During development of future projects along US 395 between LAS R4.6 and LAS R61.1, complete the "US 395 Four-Lane Divided Expressway Impact Checklist." See Appendix M for checklist.

SEGMENT 5

Fact Sheet for Segment Number 5

County:	Lassen	Route:	395	Post Mile Limits	R61.1/70.1
Location:	Junction SR 36 to Standish Buntingville Road (A3)	Segment Length in miles	9.240		

CURRENT HIGHWAY INFORMATION			
Number of Lanes:	2	Percent Trucks:	9%
Terrain:	Rolling	Percent 5-axle Trucks:	68%
Lane Width:	$11-12$ feet	Average Treated Shoulder:	$0-4$ feet

SYSTEM DESIGNATIONS	BICYCLE STATUS
Functional Classification: \quad Principal Arterial	Allowed

TRAFFIC VOLUMES AND LEVEL OF SERVICE (LOS)			
Year	Peak Hour (PH)	Annual Average Daily Traffic (AADT)	Level of Service (LOS)
2015	390	3650	B
2035	405	3790	C
Caltrans, District 2, Office of System Planning and Traffic Census			

Segment Information

US $395 \quad$ Segment Number $\quad 5 \quad$ PM Limit \quad LAS R61.1 to LAS 70.1

Segment Description

Segment 5 begins at the signalized intersection with SR 36 and ends at Standish-Buntingville Road. US 395 in this segment is two-lane conventional with varying lane widths between 11 and 12 feet and the average treated shoulder between zero and four feet. AADT decreases from 3,650 vehicles/day at the SR 36 junction to 1,800 vehicles/day at Standish-Buntingville Road (A3). Most of the segment is signed with a 55 mph speed limit, with a few exceptions within communities. There is a school zone with a 25 mph speed limit in Johnstonville for .3 miles. Daily truck volumes are 319.

Travel along this segment consists of commute and school traffic, recreational and goods movement and it is mostly intra-regional. Most of the interregional travel along US 395 south of the SR 36 junction continues west along SR 36 toward Susanville and the Central Valley. Very little interregional traffic continues north along US 395 from the SR 36 junction.

Johnstonville Road (A27) crosses the highway in Johnstonville. To the west of US 395, it connects with SR 36 on the east side of Susanville, at SR 36 postmile LAS R26.5. To the east, Johnstonville Road connects with US 395 south of the SR 36 junction via Airport Road. A third piece of A27, called Center Road, runs east-west north of US 395 between Johnstonville and Litchfield (LAS 72.9). This third piece runs past the High Desert State Prison and California Correctional Center north of Leavitt Lake.

Approximately 40% of the segment is striped for passing. There are no passing lanes in this segment.

Table 15: Turn Lanes (Segment 5)		
LAS R61.1	SR 36 Junction	Dedicated right turn lane (NB \& SB) and left turn lane (NB \& SB)
LAS R61.3	Bangham Lane/ Theatre Road	Right turn lane (SB) and left turn lane (NB \& SB)
LAS R61.3-R61.5	Bangham Lane/ Theatre Road to Johnstonville Road	Center left turn lane
LAS R61.5	Johnstonville Road	Right turn lane (SB) and left turn lane (NB \& SB)
LAS R61.5- LAS 61.4	Johnstonville Road to .1 miles north of Johnstonville Road	Center left turn lane
LAS 64.3	Buffum Lane	Right turn lane (NB)
LAS 64.5	Cottonwood Road	Right turn lane (NB) and left turn lane (SB)
LAS 64.8	Leavitt Lane	Left turn lane (NB)
LAS 70.1	Standish-Buntingville Road	Right turn lane (NB) and left turn lane (NB \& SB)

There are three communities along Segment 5: Johnstonville, Lake Leavitt and Standish. The density of land uses such as residential and commercial thins out with distance from the communities. Land use is mostly agricultural between the communities.

Johnstonville, which is at the SR 36 junction, has a general store, gas station, other businesses and residences. There is also an elementary school located along US 395 in the community. During the school year, about 200 students attend classes at the school. A pedestrian crosswalk to the school is located at Johnstonville Road (LAS R61.5). Just north of town is an electrical transformer station (LAS 61.9).

There is a bridge located at the Standish Irrigation Canal (LAS 62.2).
Lake Leavitt is a small, mostly residential subdivision located east (south) of US 395 between Buffum Lane and Cottonwood Road (LAS 64.3-64.7). The community's namesake, Leavitt Lake, was engineered in the 19th
century as part of the Honey Lake Valley irrigation system, and is southeast of the community. According to the Draft Lassen County Area Plan Update, the preferred future is to expand services in the area in order to accommodate residential growth. Just north of the community is Leavitt Lane which goes to the California Correctional Center and the High Desert State Prison.

Segment 5 ends at the intersection with Standish-Buntingville Road in the community of Standish. Within Standish, the primary land uses are residential and commercial. There are several homes, a gas station, general store, post office, churches and an RV park. Standish Hall (LAS 70.1), located with little setback from the highway, is listed on the National Register of Historic Places.

Lassen Rural Bus has stops in Johnstonville, Leavitt Lake and Standish.

Segment Considerations

- No pedestrian crosswalk at Bangham Lane/Theatre Road (LAS R61.3) in Johnstonville at the school.
- Some sections have no shoulder.
- Neither the Lassen County Transportation Commission (LCTC) nor community members support the use of A3 as a short cut between Buntingville (LAS 51.9) and Standish (LAS 70.1). The LCTC is concerned about excessive wear on the road if it were to be designated for trucks. Community members do not want an increase in traffic.
- Multiple private driveways. Cars pull out onto US 395 and accelerate from slow speeds. Cars slow down in order to turn onto private driveways.
- Agricultural vehicles along the highway at times, primarily from April to October.

Segment Management

- Consider providing highway crossings for all user groups, for example; agricultural, pedestrian and vehicle; in rural communities along the route, or where trails intersect the highway.
- Consider installing agricultural vehicle warning signs in areas with significant agricultural activity.
- Achieve standard shoulder widths.
- Consider a pedestrian crossing at Bangham Lane/Theatre Road in Johnstonville (LAS R61.3).
- Support county efforts to develop the proposed Susanville to Wendel rail trail. The Lassen County Bikeway Master Plan indicates that it would connect Susanville, Johnstonville, the state prisons, Litchfield and Wendel.
- Consider options to minimize traveler inconvenience of closures during roadwork.
- Consider strategies to decrease cut-through traffic along Standish-Buntingville Road (A3; LAS 70.1).
- Maintain existing radar feedback sign in Johnstonville (LAS R61.5).

Fact Sheet for Segment Number 6

County:	Lassen	Route:	395	Post Mile Limits	$70.1 / 139.0$
Location:	Standish Buntingville Road (A3) to Modoc county line	Segment Length in miles	68.613		

CURRENT HIGHWAY INFORMATION			
Number of Lanes:	2	Percent Trucks:	31%
Terrain:	Level to Rolling	Percent 5-axle Trucks:	87%
Lane Width:	$11-12$ feet	Average Treated Shoulder:	$0-8$ feet

SYSTEM DESIGNATIONS	BICYCLE STATUS
Functional Classification: \quad Principal Arterial	Allowed

Other Classifications	State Highway System; Interregional Road System; High Emphasis Route; National Highway System; Terminal Access (STAA); Blue Star Memorial Highway; Three Flags Highway

	Route Concept	Segment Concept
Present:	$2 C$	$2 \mathrm{C} / \mathrm{E}$
20 -Year:	2 C	$2 \mathrm{C} / \mathrm{E}$
Concept Level of Service	C/D Threshold	

TRAFFIC VOLUMES AND LEVEL OF SERVICE (LOS)			
Year	Peak Hour (PH)	Annual Average Daily Traffic (AADT)	Level of Service (LOS)
2015	180	$1400-830$	B
2035	188	$1460-890$	B
Caltrans, District 2, Office of System Planning and Traffic Census			

Segment Information

US 395 Segment Number $6 \quad$ PM Limit LAS 70.1 to LAS 139.0

Segment Description

Segment 6 begins at Standish-Buntingville Road in Standish and ends at the Modoc County line. Lane widths are 12 feet with no treated shoulders. Volumes are very low within this segment and range from 1400 in Standish down to 830 at the Modoc County line. The proportion of trucks is roughly a third of AADT. The trucks are interregional, for example, UPS semis and gas tankers, as well as locally-generated, such as trucks carrying hay or agricultural goods.

Most of Segment 6 has a 55 mph speed limit with some slower locations through communities or along curves. There is a school zone with a 25 mph speed limit in Litchfield for .3 miles.

Travel along this section is for goods movement, recreation, and local residents traveling home, to work, or to town for errands and appointments. Goods movement along Segment 6 is mostly inter-regional commercial trucks and trucks transporting agricultural goods, such as hay. There are also about 35 trucks per day transporting wood chips to the 40-megawatt wood-burning power plant that employs 40 workers along Wendel Road (LAS R76.9)

Approximately 75% of Segment 6 is striped for passing. There are no passing or truck climbing lanes within Segment 6

Table 16: Turn Lanes (Segment 6)

LAS R76.9	Wendel Road	Right turn lane (NB) and left turn lane (SB)
LAS 82.1	Bert Drive	Left turn lane (SB)
LAS 96.9	Secret Valley Roadside Rest Area	Right turn lane (SB)

There are three bridges along this segment, primarily at the southern end near Litchfield: Dill Slough (LAS R71.2), Susan River Overflow (LAS R71.9) and Susan River (LAS 72.3). Chain control locations are located at LAS 92.2 (NB), LAS 129.3 (NB) and LAS 138.3 (SB). The Secret Valley Roadside Rest Area is located at LAS 96.9. There is one weigh station along this segment: the Termo Commercial Vehicle Enforcement Facility "minisite" (LAS 114.8). Also in Termo is a sand and salt storage facility (LAS 115.2).

Lassen Rural Bus has a stop in Litchfield (LAS 72.5) and Sage Stage transit has a stop in Madeline (LAS 128.8) at the Old Chevron along its Alturas to Reno line.

This segment transitions from arid high desert to somewhat less arid high desert with rolling hills. There is one summit along this segment located at LAS 132.1, and known as Sage Hen Summit. Land use is mostly open space outside of communities, with the exception of irrigated agriculture north of Termo and ranches.

Much of the surrounding land is managed by public resource agencies such as the United States Forest Service (USFS) and the Bureau of Land Management (BLM). Near the southern part of Segment 6, the route passes the entrance to the Fleming Unit of the Honey Lake Wildlife Area (LAS 76.0) which offers wildlife viewing, birdwatching and hunting. Just north of there is BLM's Litchfield Wild Horse and Burro Corrals and the Skedaddle Mountain Wilderness Study Area. Off-route along Karlo Road (LAS 92.7) is the entrance to the Biscar Wildlife Area, offering wildlife viewing, bird watching and hunting. BLM manages the Ramhorn Springs Campground and native plant garden along US 395 at LAS 100.0.

Trails

Some historic trails are located in the vicinity of US 395 along Segment 6. A segment of the California National Historic Trail runs parallel to US 395 from Litchfield to Viewland (LAS 72.4-82.2) and crosses the highway at LAS 72.5, 76.5, R77.6. A historic marker commemorating The Noble Emigrant Trail is located along the side of the highway at LAS 80.4. More information about historic landmarks can be found in Appendix F.

The Modoc Line Rail trail is a former north-south railroad bed that has been converted to an 86 mile-long off-road gravel trail that currently runs from Wendel (four miles east of LAS R76.9) to Likely (MOD 3.2). It is mostly parallel to the highway, and crosses in this segment at LAS 82.0 and R114.8.

An abandoned east-west railroad bed runs parallel to US 395 for about 2 miles and crosses the highway in Litchfield at LAS 72.8. The railroad was at one time owned by Quincy Railroads and the line ran from Wendel to Susanville. According to the 2011 Lassen County Bikeway Master Plan, the railroad bed is a planned to become a paved rail trail from Susanville to Wendel including connections with the California Correctional Center and the High Desert State Prison.

Communities

From south to north, US 395 passes through four small communities: Litchfield, Ravendale, Termo and Madeline. Litchfield is a small community with a population of about 200. Within the community are some residences and Shaffer Elementary School. County Road A27 ends in Litchfield at US 395 (LAS 72.9).

Ravendale (LAS 108.5) is a small community of 20 residents and is located equidistant between Susanville and Alturas. The town was established in 1909 as a stop along the railroad. Today, there is a motel, post office, a limited use airport and a BLM fire station.

Termo (LAS 115.4) is a small community of 26 that was the northern terminus of the railroad in the late 1890s. Passengers and freight with destinations to the north were transferred to stagecoach to continue northbound. Termo-Grasshopper Road is an 18-mile long road that connects US 395 with SR 139 to the west. Interregional travelers frequently use Termo-Grasshopper Road as a cutoff to SR 299 west or SR 139 north to avoid additional miles by traveling through Alturas. Juniper Ridge Elementary School is located 3 miles west of the route along Termo Grasshopper Road.

Similar to Termo, Madeline (LAS 128.8) was at one time the northern terminus of the railroad. Madeline has a population of 60 and has a water tower, post office, small general store with gas pumps, and other businesses. A trailhead for the Modoc Line Rail Trail is located just east of US 395.

Segment Considerations

- Ice and snow can impact operations along US 395 in locations at higher elevations, along north-facing slopes and on bridges.
- Multiple private driveways in the Standish-Litchfield area. Cars pull out onto US 395 and accelerate from slow speeds. Cars slow down in order to turn onto private driveways.
- Some sections have no shoulders.
- Narrow travel lanes at Sage Hen Summit (LAS 133.3)
- The Lassen County Transportation Commission (LCTC) does not support the use of Termo Grasshopper Road as a short cut avoiding Alturas. The LCTC is concerned about excessive wear and tear on county roads.
- Long distances between places for trucks to rest and for services such as fuel, food and lodging.
- Sometimes trucks park in unpaved, unofficial pull-outs (LAS 79.8, 97.6, 99.5, 103.8, 134.0).
- Agricultural vehicles along the highway at times, primarily from April to October.
- US 395 experienced a closure during winter of 2016-2017 from LAS 70.2-115.4 due to flooding
- Rockslide areas (LAS 95.8 and 97.0).
- Closing the Honey Lake Rest Area at the same times as the Secret Valley Rest Area can be an inconvenience for travelers.
- Secret Valley Rest Area (LAS 96.9) is not developed to a standard typical of a rest area. Due to utility and water constraints, the Secret Valley Rest Area has pit toilets and no potable water.
- Culvert pipes extend out beyond the sides of the highway at Sage Hen Summit (LAS 133.3).
- Portions of Segment 6 fall within Greater Sage-Grouse habitat management areas.
- Deer are present in the Smith Reservoir (LAS 134.3) area.
- The Modoc Line Rail trail crosses US 395 at LAS 82.0 and R114.8.

Segment Management

- Achieve standard shoulder widths.
- Maintain existing access control.
- Consider providing highway crossings for all user groups, for example; agricultural, pedestrian and vehicle; in rural communities along the route, or where trails intersect the highway.
- Consider the Modoc Line Rail Trail crossings during future projects that involve US 395 at LAS 82.0 and R114.8.
- Support county efforts to develop the proposed Susanville to Wendel rail trail. According the Lassen County Bikeway Master Plan, the proposal would connect Susanville, Johnstonville, the state prisons, Litchfield and Wendel.
- Should funding become available, consider a year-round rest area with running water and electricity near Likely (MOD 3.2) or Ravendale (LAS 108.5).
- Provide 24-hour, ADA-accessible alternative locations when roadside rest areas are closed.
- Consider options to minimize traveler inconvenience of closures during roadwork.
- Consider strategies to decrease cut-through traffic along Termo-Grasshopper Road.
- Continue the improved mowing along the sides of the highway which helps drivers see deer, deer see vehicles and helps to prevent fires. Mow the older, larger sage brush as well.
- Consider installing wildlife over- or under-crossings along migratory routes that cross US 395. Continue to repair existing wildlife crossings and fences, as necessary.
- Consider using "major deer crossing area ahead" signs in areas with a lot of deer.
- The deer zone in the vicinity of Sage Hen (LAS 133.3) needs to be better marked.
- Consider installing agricultural vehicle warning signs in areas with significant agricultural activity.
- Consider deepening the Susan River under the Old Bridge (LAS 72.3) to provide a closer water source for firefighting purposes and potentially improving flood control during the winter months.
- Achieve standard lane and shoulder widths at Sage Hen Summit (LAS 133.3). Fix culvert pipes if necessary.
- Possible future ITS elements: an RWIS in Termo (LAS 115.2) and a CCTV and an RWIS at Sage Hen Summit (LAS 133.3).

Alturas

02-MOD-395 PM 21.0

(${ }^{*}$

 54CHAT

UNited States Route 395 SEGMENT 7

Fact Sheet for Segment Number 7

County:	Modoc	Route:	395	Post Mile Limits	$0.1 / R 21.0$
Location:	Lassen county line to McDowell Avenue, Alturas	Segment Length in miles	20.972		
CURRENT HIGHWAY INFORMATION					
Number of Lanes:	2	Percent Trucks:	29%		
Terrain:	Rolling to Level	Percent 5-axle Trucks:	83%		
Lane Width:	12 feet	Average Treated Shoulder:	$2-8$ feet		

SYSTEM DESIGNATIONS	BICYCLE STATUS
Functional Classification: \quad Principal Arterial	Allowed

Other Classifications	State Highway System; Interregional Road System; High Emphasis Route; National Highway System; Terminal Access (STAA); Blue Star Memorial Highway; Three Flags Highway

	Route Concept	Segment Concept	
Present:	2 C	$2 \mathrm{C} / \mathrm{E}$	
20 -Year:	2 C	2C/E (maintain existing access control)	
Concept Level of Service		C/D Threshold	

TRAFFIC VOLUMES AND LEVEL OF SERVICE (LOS)				
Year	Peak Hour (PH)	Annual Average Daily Traffic (AADT)	Level of Service (LOS)	
2015	120	$780-1050$	B	
2035	131	$880-1150$	B	
Caltrans, District 2, Office of System Planning and Traffic Census				

Segment Information

US 395 Segment Number 7
PM Limit MOD 0.1 to MOD R21.0

Segment Description

Segment 7 begins at the Lassen-Modoc county line and ends at the southern end of the city of Alturas at McDowell Avenue. Most of the segment has two lanes with the exception of . 1 mile at the northern end into Alturas, which has four lanes. Most of the segment's access control is "expressway," meaning partial control. The segment also has a short length of "conventional," meaning no access control. Lane widths are 12 feet and shoulder widths range from two to eight feet. Traffic volumes are lowest near the county line and increase to an AADT of 1050 near Alturas. Truck percent in this segment is 29%. Travel within Segment 7 consists of interregional and local agriculturally-oriented goods movement, recreational travel, and traveling to Alturas from outlying areas for work and running errands.

The posted speed limit is typically 55 mph within Segment 7 with the exception of a 40 mph limit in Likely and a decrease to 35 mph close to Alturas.

There are five bridges within Segment 7: Flournoy Equipment UC (MOD R1.9), South Fork Pit River (MOD 3.7), Juniper OH (MOD R 15.1), South Fork Pit River (MOD R16.5), South Fork Pit River (MOD R19.6), Alturas OH (MOD R20.8). A vista point is located within the Modoc National Wildlife Refuge (MOD R20.4).

There are .2-mile-long truck-climbing lanes in both directions from MOD 4.6-4.8. About 80% of the segment is striped to allow for passing.

Table 17: Turn Lanes (Segment 7)

MOD R15.0	CR 115 (road to Modoc National Wildlife Refuge	Right turn lane (NB)
MOD R15.3	Jone Ln (CR 61)	Right turn lane (SB)

The land use surrounding most of this segment is agricultural and open space. Most of the agricultural uses include ranching and horse pastures. There are some farmed fields irrigated with water from the Pit River, which flows into Shasta Lake and is a tributary to the Sacramento River.

This segment also passes through lands managed by the USFS and through the Modoc National Wildlife Refuge (MOD R19.7-R20.8), which hosts $45-50$ breeding pairs of Sandhill Cranes. There is a wildlife viewpoint in the refuge along the highway (MOD R20.4). To the east in the distance are the Warner Mountains.

This segment passes through the community of Likely (population 99, MOD 2.7) which has a post office, a café, a general store, a cemetery and a fire department. CR 65 heads east from Likely and leads to the Likely Rancheria and a golf and RV resort. Just north of Likely, the Modoc Line Rail Trail crosses US 395 (MOD 4.0). Sage Stage Transit has a stop in Likely at the general store along its Alturas to Reno line.

Near the northern end of this segment, density increases in proximity to Alturas. The Modoc County Museum (MOD R21.0) is located along the route between Glen Street and McDowell Avenue. Just east of the route along McDowell Avenue are an RV park and the Alturas Indian Rancheria. According to the Modoc County Housing Element, one area in unincorporated Modoc County that is experiencing the highest growth is the five-mile radius around Alturas.

Segment Considerations

- Snow and/or ice can be present on the highway surface during the winter months.
- The posted speed limit seems to be violated frequently in Likely.
- Limited services south of Likely and no advisory signs for southbound travelers on the north end of town. Currently, there is a sign at the south end of town (MOD 2.0) which reads "Next Services 70 Miles."
- Curves at bridges (MOD R19.6 and 26.2) and north and south of Fitzhugh Creek Road (MOD 11.9 and MOD 13.1).
- Travelers sometimes use unofficial places to pull over and use as a restroom near Likely (MOD 3.2).
- All of Modoc County is in open range.
- Deer are present along the highway at times.
- Trucks park along the southbound shoulder in Likely in the vicinity of the café (MOD 3.2).

Segment Management

- Achieve standard shoulder widths.
- Community members would like a sign on US 395 directing users toward the Modoc Line Rail Trail (to the east along Dons Road, MOD 3.2), and signage and parking at the two trail heads. They are also interested in additional connections to the trail.
- Continue the improved mowing along the sides of the highway which helps drivers see deer, deer see vehicles and helps to prevent fires. Mow the older, larger sage brush as well.
- Explore opportunities for traffic calming through Likely (MOD 3.0).
- Consider relocating the "Next Services" sign from the south end to the north end of Likely so southbound travelers have an opportunity to stop for services before leaving town.
- Maintain existing HAR Flasher at Glen Street (MOD R20.9). Possible ITS element: CMS south of Alturas (MOD R20.9).
- Should funding become available, consider a year-round rest area with running water and electricity near Likely or Ravendale.

Fact Sheet for Segment Number 8

County:	Modoc	Route:	395	Post Mile Limits	R21.0/23.3
Location:	Alturas: McDowell Avenue to .2 miles east of N East B Street	Segment Length in miles	1.509		
CURRENT HIGHWAY INFORMATION					
Number of Lanes:	$2-4$	Percent Trucks:	16%		
Terrain:	Level	Percent 5-axle Trucks:	68%		
Lane Width:	$11-13$ feet	Average Treated Shoulder:	$6-8$ feet		

SYSTEM DESIGNATIONS	BICYCLE STATUS
Functional Classification: \quad Principal Arterial	Allowed

Other Classifications	State Highway System; Interregional Road System; High Emphasis Route; National Highway System; Terminal Access (STAA); Blue Star Memorial Highway; Three Flags Highway		
	Route Concept	Segment Concept	
Present:	2 C	2-4C	
20-Year:	2 C	TBD	
Concept Level of Service		C/D Threshold	

TRAFFIC VOLUMES AND LEVEL OF SERVICE (LOS)			
Year	Peak Hour (PH)	Annual Average Daily Traffic (AADT)	Level of Service (LOS)
2015	620	5700	C
2035	635	5840	C
Caltrans, District 2, Office of System Planning and Traffic Census			

Segment Information

| US 395 | Segment Number | 8 | PM Limit |
| :---: | :---: | :---: | :---: | MOD R21.0 to MOD 23.3

Segment 8 covers the part of US 395 that is in Alturas (population 2,827), the largest community and only incorporated city along the route. US 395 serves as Alturas' Main Street, and bears the name "Main Street" from Mc Dowell Avenue (MOD R21.0) to the SR 299 junction (MOD 22.8). The route is coterminous with SR 299 from US 395 MOD 22.8 to the turnoff of SR 299 toward Cedarville (US 395 MOD 28.2), but carries the US 395 name along that section. Part of US 395 that is coterminous with SR 299 within the city of Alturas is called 12th Street (from MOD 22.8-22.9).

US 395 in this segment is four-lane conventional from Mc Dowell Avenue to SR 299 (MOD 22.8). The section that has four lanes has sidewalks and on-street parking is allowed along most of the section. North of SR 299, the highway is two-lane conventional with a center left turn lane to MOD 23.2. Lane widths are 11-13 feet and the average treated shoulder is 6-8 feet.

The speed limit varies within this segment, but it is primarily 25 mph from Mc Dowell Avenue to the SR 299 junction. North of the SR 299 junction, the speed limit increases to 35 mph and then to 45 mph near the northern end of the segment.

Volumes in Alturas are 5700, which is much higher than the other parts of US 395 in Modoc County. AADT tapers down to 2800 toward the northern end of the segment. The percent of trucks is 16%. Segment 8 has the highest bicycle and pedestrian volumes, due to the presence of the high school and the compact mixture of land uses such as residential, office and commercial.

The route purpose within this segment is mostly local trips for commuting to work or school, shopping and appointments. On Fridays, some employees do not work and there is a noticeable decrease in traffic on roadways. There is some recreational travel and goods movement as well. Trucks transporting produce, hay or livestock from the surrounding farms and ranches are some of the primary goods movement users of US 395 through Alturas.

A couple of times per year, portions of US 395 in this segment serve as a parade route for community events. The community values the opportunity for parades and other events to occur along US 395.

Alturas hosts a variety of land uses and has a relatively higher density of development than the surrounding areas. Main Street (US 395) is lined with residences and a variety of commercial establishments, such as gas stations, hotels, restaurants, shops and banks, some of which are housed within historic structures. The Nevada-California-Oregon Railway Headquarters (MOD 22.5) is on the National Register of Historic Places. (See Appendix F for further information regarding historic monuments).

There is a high proportion of government employees in the Alturas area: USFS, Cal Fire, Modoc County, city of Alturas, high school and seasonal employees. Government offices, such as those used for the Modoc County Transportation Commission, and schools are also positioned on US 395. Modoc High School is on the east side of Main Street (MOD 22.6). There are no vehicular entrances to Modoc High School from US 395, but there is pedestrian access about mid-block to the main entrance.

Within a couple of blocks of Main Street are additional commercial uses, offices, schools, parks and a fire department. The 1st Street intersection (MOD 22.1) has a double yellow flashing light above the center of the intersection with a sign attached that says "Fire Truck Exit."

Table 18: Turn Lanes (Segment 8)

MOD 22.8	SR 299 junction	Right turn lane (NB) and left turn lane (SB)
MOD 22.8-23.2	.1 miles north of N East B Street	Center left turn lane

At the junction with SR 299 (MOD 22.8), there is a four-way stop sign with overhead flashing red lights. The Alturas Maintenance Station is located at MOD 23.0. The bridge over the North Fork Pit River is located at MOD 21.9.

There is one at-grade railroad crossing (MOD 22.5) within the school zone of the high school, which crosses at roughly 30 degrees to the highway. Trains pass through town about twice per week to and from a lumber mill and gravel operation in Lakeview, Oregon.

The Alturas to Reno transit service provided by Sage Stage originates at the Rite Aid in Alturas.

Segment Considerations

- High volumes of pedestrians and bicyclists.
- Parked drivers might open their car door into the travel lane while a bicyclist is riding past.
- Active railroad tracks cross the highway at-grade at a skewed angle to the highway within the school zone. Riding over tracks at a skewed angle can be difficult for bicyclists, especially when the tracks are wet.
- Various railroad crossing elements are frequently broken, for example, the lights or the arm.
- The public has commented that there are 30 second delays for vehicles at 4th, 8th and 10th Streets during school start and end times, lunch time and at 5:00 PM.
- Community members have voiced concerns about Alturas Main Street lighting being too bright and excessive; that it impedes the ability to see pedestrians at and in the crosswalks at night.
- Numerous driveways.
- Trucks park in lots owned by local businesses.
- Community members expressed opposition to I-11 in this area because of the potential impacts to the small town lifestyle and impacts to public lands and wildlife (in areas outside of Alturas).
- Stacking plowed snow in the middle of the road can make it difficult to see lane striping.
- The region sees a need for improved active transportation in Alturas; it is a regional priority.

Segment Management

- Support railroad owner efforts to remove the tracks (MOD 22.5), should they ever express interest in doing so.
- Consider various traffic-calming and visibility-improving strategies (not an exhaustive list):
- Add more speed limit signs and make more visible
- Upgrade signs to fluorescent yellow green, as needed.
- Thermoplastic decorative treatment in crosswalks
- Bulb-outs at corners
- Stop signs
- Solar-powered motion-detection bicycle/ pedestrian beacons.
- Bicycle buffer
- Bicycle lanes
- Road diet (two vehicular lanes with a center left turn lane plus bike lanes or paths)
- Although the current level of service is C, according to case studies performed by the Federal Highway Administration, "road diets have the potential to improve safety, provide operational benefits and increase the quality of life for all road users."
- Consider "the door zone" when placing bicycle facilities adjacent to parking stalls.
- Support city of Alturas efforts to decrease delays at intersections in Alturas.
- Support city of Alturas efforts to improve street lighting along Main Street.
- Support city and school efforts to improve student and driver education regarding the rights and responsibilities of bicycles and pedestrians.
- Aesthetic street design elements, such as decorative lampposts, signs, flags, should be considered during future projects. Existing examples in Alturas include lighting, trees and planters, as shown in Figure 23.
- Consider truck parking.
- Consider community opposition to $\mathrm{I}-11$ in Modoc County near Alturas if I-11 is ever extended into northeastern California.

Figure 23. Decorative Planter in Alturas along US 395 (MOD 22.1)

- Maintain existing HAR at the Alturas Maintenance Station (MOD 23.1). Possible ITS element: CCTV at the SR 299/ US 395 junction (MOD 22.8).
 SEGMENT 9

Fact Sheet for Segment Number 9

County:	Modoc	Route:	395	Post Mile Limits	$23.3 / 61.6$
Location:	.2 miles east of N East B Street to Oregon state line	Segment Length in miles	38.263		
CURRENT HIGHWAY INFORMATION					
Number of Lanes:	2	Percent Trucks:			
Terrain:	Level	Percent 5-axle Trucks:	13%		
Lane Width:	12 feet	Average Treated Shoulder:	0 feet		

SYSTEM DESIGNATIONS	BICYCLE STATUS
Functional Classification: \quad Principal Arterial	Allowed

TRAFFIC VOLUMES AND LEVEL OF SERVICE (LOS)				
Year	Peak Hour (PH)	Annual Average Daily Traffic (AADT)	Level of Service (LOS)	
2015	170	$2800-700$	B	
2035	176	$2900-800$	B	
Caltrans, District 2, Office of System Planning and Traffic Census				

Segment Information

Segment Description

Segment 9 begins at the eastern boundary of the city of Alturas, which is .2 miles east of N East B Street. Along this segment, the highway is two-lane conventional with 12 -foot lanes and no shoulders. Volumes range in this segment from a low of 700 at the Oregon state line to a high of 2800 at the southern end of the segment. The truck percent is 13% along this segment. Posted speeds are 40 mph in communities to 65 mph outside of communities. US 395 is coterminous with SR 299 from MOD 22.8 to MOD 40.6.

Many of the trucks along this segment are locally-generated, agriculturally-oriented and seasonally transport farm products such as hay and livestock. An active railroad meanders roughly parallel to the west side of the highway along this segment. Distance from the highway to the railroad is between $.25-2.0$ miles. About 80 rail cars per month run along this line and carry wood and mineral products to and from Lakeview, Oregon (15 miles north of the state line).

US 395 is also used for recreation and there are some RVs and campers along the route. There are also vehicles traveling from nearby residences to larger population centers such as Lakeview and Alturas for work and running errands.

There are five bridges on this segment: North Fork Pit River (MOD 26.2), Parker Creek (MOD 26.7), Toms Creek (MOD 32.6), Joseph Creek (MOD 34.1) and Willow Creek (MOD 54.5).

The Alturas agricultural inspection station is located at MOD 27.0. The Goose Lake Vista Point is at MOD 51.9 and the Davis Creek Commercial Vehicle Enforcement Facility "mini-site" is at MOD 54.0.

About 80% of this segment is striped to allow for passing.
Table 19: Turn Lanes

MOD 24.1	Pencil Road	Right turn lane (SB) and left turn lane (NB)
MOD 27.7	Unnamed driveway	Left turn lane (SB)
MOD 28.3	SR 299	Dedicated right turn lane (NB) and dedicated right turn lane (from SR 299 onto US 395)

Density of development decreases with distance from Alturas; almost all of this segment is rural with very few residences. US 395 passes through two communities along this segment: Davis Creek (MOD 42.6) and New Pine Creek (MOD 61.3). The primary land uses north of Alturas are agriculture, ranching and open space. Sections of this segment pass through lands managed by the U.S. Forest Service and to the east is the Warner Mountain Range. Sugar Hill Summit (elevation 5146) is located at MOD 50.9.

This segment passes directly through the Pit River Tribe XL Reservation for about seven miles (approximately MOD 26.2-33.3). More information about the Pit River Tribe can be found in Appendix C.

There are two historical landmarks and one historic trail along or near this segment. Chimney Rock is located at MOD 29.9 and the historical site of Willow Ranch is located off-route near MOD 54.0. From Alturas to approximately MOD 50.6 near Goose Lake, portions of the California National Historic Trail, known as the Applegate/Lassen cutoff in this section, run parallel to and cross US 395 in multiple locations. See Appendix F for more information about historical markers.

Figure 24. School Bus Stop in Davis Creek (MOD 42.6)

Davis Creek (population 53, MOD 42.6) and New Pine Creek (population 129, MOD 61.3) are located along US 395. They have a limited variety of uses, including post offices, general stores and fuel pumps. New Pine Creek is situated along the state line and is partially in California and partially in Oregon.

Goose Lake is located west of US 395 for the northern half of the segment. The lake extends into Oregon and the Goose Lake State Recreation Area can be accessed via State Line Road in New Pine Creek.

North of the California/Oregon border, the route is a two-lane conventional highway and is designated as a piece of the Oregon Outback Scenic Byway. Fifteen miles north of the state line is Lakeview, Oregon, the "Hang Gliding Capital of the West."

Segment Considerations

- Informal gravel turnouts.
- Shaded areas limit the melting of ice and snow.
- Deer and other wildlife such as antelope can be present along the highway.
- No shoulders.
- Open range.
- Rock slide area (MOD 31.2).
- Route passes through tribal lands (approximately MOD 26.2-33.3). The Pit River Tribe has inquired about bilingual signage while traveling through Tribal land.
- After 10pm, no truck parking facilities are available.
- North and south of the east junction with SR 299, the speed limit is 65 . Vehicles turning onto US 395 are accelerating from zero, if headed southbound, and from a slow speed if headed northbound. Vehicles traveling at 65 mph on US 395 come up on them quickly. Most community members at the Alturas workshop were opposed to having a roundabout at the SR 299 junction.

Segment Management

- Continue the improved mowing along the sides of the highway which helps drivers see deer, deer see vehicles and helps to prevent fires. Mow the older, larger sage brush as well.
- Coordinate with the Pit River Tribe regarding their request for bilingual signs along US 395.
- Consider installing guard rails in the Goose Lake curve/ Sugar Hill area (MOD 47.0-51.0) when they can be incorporated into a project. Support the region's efforts to install guardrail at the location, should they
choose to do so with regional funds.
- Achieve standard shoulders.
- Some community members who attended the public workshop in Alturas would like a rest area with running water, electricity and heat to be installed about halfway between Lakeview and Alturas.
- Some community members who attended the public workshop in Alturas would like a sign telling SB travelers at the Oregon state line that US 395 into California is the scenic byway known as "The Emigrant Trails Scenic Byway"
- Maintain existing HAR flasher at Pencil Road (MOD 23.7). Possible ITS element: CMS north of Alturas (MOD 27.1).

APPENDIX A: COUNTY INFORMATION

Lassen County is located in the northeastern region of California. It is bordered by four northern California counties and the Nevada State Line on the east side of the county. Lassen County is the fourth largest of California's 58 counties. In this county the Sierra Nevada and Cascade mountains, meet the desert of the Great Basin, its lower valleys generally above 4,000 feet and Susanville peak rising over $6,500 \mathrm{ft}$. above sea level. This county has the Eagle Lake, Caribou Wilderness and the Mountain Meadows Reservoir. To the west is Lassen Volcanic National Park and Lassen National Forest.

The U.S. Census Bureau county population is $34,895^{*}$. The only incorporated city in the county is Susanville, which is also the County Seat. Lassen County has total area of $4,720.4$ square miles Water area is 163.1 square miles and land area is $4,557.3$ square miles, of which approximately 63% is publicly-owned.

Lassen County has five major Highways, State Routes 44, 36 and 299 running east west, and US 395 and SR 139 run north south. State Highways are 17\% of maintained public roads mileage in the County, but account for 49% of Daily Vehicle Miles Traveled (DVMT).

[^1]

Modoc County is located in the extreme northeast corner of California. Modoc County is located in the far northeast corner of the U.S. state of California, bounded by the state of Oregon to the north and the state of Nevada to the east. A large portion of Modoc County is federal land. Several federal agencies, including the United States Forest Service, Bureau of Land Management, National Park Service, Bureau of Indian Affairs, and the United States Fish and Wildlife Service have employees assigned to the area, and their operations are a significant part of the economy and services in this rural area.

The U.S. Census Bureau county population is $9,686^{*}$ and the county seat is Alturas. Modoc County has a total area of approximately $4,203.4$ square miles. Water area is 259.3 square miles and land area is $3,944.1$ square miles.

The County has 3 major highways. SR 299 traverses in a northerly direction from the Lassen County line in the southwest portion of the county, and continues eastward through the middle of the county to the Nevada State line. SR 139 extends from the northwest corner of the county and connects to the eastern portion of SR 299. US 395 extends north south from Lassen County line to the Oregon state line. State Highways are 11% of maintained public roads mileage in the County, but account for 39\% of DVMT.

[^2]
APPENDIX B: PUBLIC OUTREACH ACTIVITIES \& PUBLIC INVOLVEMENT

Table 20: Public and External Stakeholder Involvement		
Date	Contact	Action/Progress
March 2017	Lassen and Modoc Local Transportation Commissions	Kick-off announcement for the US 395 TCR.
April 2017	See next page ${ }^{1}$	Email and US Postal Mailing of Alturas workshop flyer.
April 2017	Sierra Local Transportation Commission	Kick-off announcement for the US 395 TCR.
April 2017	Website	Added US 395 TCR is in progress to the Caltrans website, which included an email link to the TCR lead person.
Spring 2017	Nevada Department of Transportation (NDOT)	Outreach with the Nevada Department of Transportation.
5/8/17	Lassen County Transportation Commission	Presented information about the US 395 TCR and sought comments from commissioners.
May 2017	Media releases	Press releases announcing public workshops.
May 2017	See next page ${ }^{1}$	Email and US Postal Mailing of Doyle and Janesville workshop flyers.
May 2017	Plumas Local Transportation Commission	Kick-off announcement of the US 395 TCR.
5/15/17	Public Workshop: Alturas	See Summary of Comments - Alturas Public Workshop on page page 116.
5/24/17	Public Workshop: Doyle	See Summary of Comments - Doyle Public Workshop on page page 121.
5/25/17	Public Workshop: Janesville	See Summary of Comments - Janesville Public Workshop on page page 125.
6/13/17	Lassen County Board of Supervisors	Presented information about the US 395 TCR and sought comments from the supervisors.
TBD	Website	Posted Draft US 395 TCR on the District 2 website.
TBD	Partner agencies, media, workshop participants	Provided notice of website posting of Draft US 395 TCR.
TBD	Lassen County Transportation Commission	Presented Draft TCR.
TBD	Modoc County Transportation Commission	Presented Draft TCR.
TBD	Lassen County Board of Supervisors	Presented Draft TCR.
TBD	Lassen County Transportation Commission	Presented Final TCR for concurrence.
TBD	Modoc County Transportation Commission	Presented Final TCR for concurrence.

${ }^{1}$ Recipients of workshop announcements included: Lassen LTC, Modoc LTC, Sierra LTC, Plumas LTC, State Line Elementary School, Alturas Border Station, Oregon Department of Transportation, BLM Applegate Field Office, Devil's Garden Ranger District (USFS), Modoc National Wildlife Refuge, Modoc High School, Holiday Market, Rite Aid, Alturas Chamber of Commerce, KLMS Working Group, City of Alturas, Alturas Rotary Club, Lake County Road Department, South Central Oregon Area Commission on Transportation, Modoc County, California Department of Fish and Wildlife, CalFire, California Highway Patrol, Lassen County, City of Susanville, Leavitt Lake Community Services District, Lassen County Chamber of Commerce, Susanville Municipal Airport, BLM Eagle Lake Field Office, Sierra Army Depot, Federal Correctional Institution Herlong, Johnstonville Elementary School, Shaffer Elementary School, Hallelujah Junction Market, Shell (Doyle), 76 Gas Station (Herlong), Chevron (Janesville), Susanville Auto Center, Johnstonville Quality Foods, Every Bloomin Thing, Shell (Standish), Heard's Market, Point Horizon Institute, Lassen Land and Trails Trust, Lassen LAFCo, High Desert State Prison, California Correctional Center, Long Valley Boarder Station, Washoe Regional Transportation Commission, Washoe County, Nevada Department of Transportation, Post Offices (Doyle, Herlong, Milford, Janesville, Standish, Litchfield, Ravendale, Madeline, Likely, Alturas, Cedarville, Davis Creek, and New Pine Creek), American Trucking Association, and Doyle Senior Center.
${ }^{2}$ District 2 has a maintenance agreement for the three-mile portion of US 395 in Sierra County. The District is not proposing a major change in facility for the portion of US 395 in Sierra County.

CALIFORNIA DEPARTMENT OF TRANSPORTATION•DISTRICT 2

The purpose of the event is to provide the public the opportunity to discuss the future of United States Route 395. There will be a brief presentation followed by an opportunity to talk about your interests. Please attend this workshop and share your views with us.

- Monday, May 15th • 4:00-5:00 pm
- Alturas City Hall Council Chambers 200 North Street • Alturas • Ca (BETWEEN S RINE AND N HOWARD ST)

FOR MORE INFORMATION:
CALTRANS PUBLIC INFORMATION OFFICE•530.225.3426 PROJECT MANAGER TRINA BLANCHETTE • 530.225.3478

The purpose of the event is to provide the public the opportunity to discuss the future of United States Route 395. There will be a brief presentation followed by an opportunity to talk about your interests. Please attend this workshop and share your views with us.

- Wedneslay, May 24th $6: 00-7: 00 \mathrm{pm}$

 - Doyle Senior Center - 436685 Doyle Loop \cdot Dorle • CAFOR MORE INFORMATION: CALTRANS PUBLIC INFORMATION OFFICE•530.225.3426 PROJECT MANAGER TRINA BLANCHETTE• 530.225.3478

The purpose of the event is to provide the public the opportunity to discuss the future of United States Route 395. There will be a brief presentation followed by an opportunity to talk about your interests. Please attend this workshop and share your views with us.

- Thusslay, May 25h \bullet 7:00-:000 pm

 - Janesille fire tall
- 463390 MainSt Janesille •CA

(AT THE CORNER OF MAIN \& SEARS)
\qquad

FOR MORE INFORMATION:
CALTRANS PUBLIC INFORMATION OFFICE•530.225.3426
PROJECT MANAGER TRINA BLANCHETTE•530.225.3478

Draft US 395 Transportation Concept Report


```
:#: Apps
```

```InDesign Keyboard S \(\mid\)
```

```Illustrator Keyboard SI Excel Keyboard shortc Word Keyboard Shor


\section*{NEWS RELEASE}

Date: May 1, 2017
District: 2 -Redding
Caltrans Contact: Trina Blanchette (530) 225-3478
FOR IMMEDIATE RELEASE

\section*{PUBLIC WORKSHOP REGARDING US HIGHWAY 395 IN ALTURAS}

REDDING - The California Department of Transportation (Caltrans) will host a public workshop in Alturas on May 15, 2017 from 4 to 5 p.m. at the Alturas City Hall Council Chambers, 200 W. North Street, Alturas. The purpose of this event is to provide the public the opportunity to discuss the future of US Highway 395. This input will assist Caltrans in developing a long-range planning document for the route called a Transportation Concept Report, a plan that will address the next 20 years.

Representatives from Caltrans will be available to take comments and answer questions. The workshop will provide an opportunity for the public to talk about their ideas on what they want US Highway 395 to look like in the future.

Comments or questions may be submitted at these meetings, by telephone, email or by mail. Comments can be provided to Trina Blanchette by phone at (530) 225-3478, email address (trina_blanchette@dot.ca.gov) or sent to Caltrans District 2, Attention: Trina Blanchette, Office of System Planning, 1657 Riverside Drive, MS 3, Redding, CA 96001.


Date: May 10, 2017
District: 2 -Redding
Caltrans Contact: Trina Blanchette (530) 225-3478

\section*{FOR IMMEDIA TE RELEASE}

PUBLIC WORKSHOPS REGARDING US HIGHWAY 395 IN DOYLE AND JANE SVILLE

REDDING - The California Department of Transportation (Caitrans) will host public workshops in Lassen County at the following locations:
Doyle: May 24, 2017 from 6 to 7 p.m. at the Doyle Senior Center, 434685 Doyle Loop. Doyle.

Janesville: May 25, 2017 from 7 to 8 p.m. at the Janesville Fire Hall, 463390 Main Street, Janesvile.

The purpose of these events is to provide the pubbic the opportunity to discuss the future of US Highway 395. This input will assist Caltrans in developing a long-range planning document for the route called a Transportation Concept Report, a plan that will address the next 20 years.

Representatives from Caitrans will be avalabie to take comments and answer questions. The workshop will provide an opportunity for the public to tak about their ideas on what they want US Higrway 395 to look like in the future.
Comments or questions may be submitted at these meetings, by telephone, email or by mail. Comments can be provided to Trina Blanchette by phone at (530) 225-3478, emall address (trina_blanchettegdot ca_gov) or sent to Caltrans District 2, Attention: Trina Blanchette, Office of System Planning, 1657 Riverside Drive, MS 3, Redding. CA 96001.


KRCRTV.com Community Calendar


File Edit Goto Favorites Help
\(x\) §Convert - 囟Select

Doyle Seniors Bingo
The Doyle Senior Building hosts an evening of bingo at 6:30 p.m. Saturday, May 20.

Doyle Senior Building Ladies Tea
The Doyle Senior Building hosts a Ladies Tea at the Doyle Community Center at 2 p.m. Saturday, May 20.

Everyone is welcome.
Plumas Audubon Society Spanish Ranch Bird Walk, Meadow Valley
Meet at 6669 Buck's Lake Road in Meadow Valley at 7 a.m. Saturday, May 20. When coming from Quincy, the house on the right side, two houses past the Pineleaf intersection. The walk will go until about 10:30 a.m.
For more information, visit plumasaudubon.org/calendar.

Third Saturday Breakfast
The Friends of the LassenJanesville Masonic Lodge No. 149 host the Third Saturday Breakfast from 8 to 11 a.m. Saturday, May 20 at the Masonic Hall on Lassen Street in Susanville.
For more information, call Ric Nunnellee at 310-6097.
susanivne sympnony Society Pops Concert
The Susanville Symphony will play some of the greatest popular music of all time including Grammy winning artists like Adelle, Bruno Mars and more at 2:30 p.m. Sunday, May 21 at the Susanville Assembly of God Church.
Tickets are available at Axia Home Loans, Margie's Book Nook or by calling the Symphony Hotline at \(310-8111\).
For more information, go to susanvillesymphony.com.

Susanville Indian Rancheria Eighth annual Memorial Pow Wow
The Susanville Indian Rancheria hosts the eighth annual Memorial Pow Wow Sunday, May 21 at the Lassen County Fairgrounds.
For more information, call Amelia Luna at 249-7192 or visit sir-powwow.com.

Tuesday, May 23
Liam Kyle Cahill at Lassen Ale Works Liam Kyle Cahill from Reno, appears at Lassen Ale Works from 6 to 8 p.m. Tuesday, May 23.

Jaycee Whitlock, with her mor inflatable balls during the Chil

\section*{Caltrans hosts workshops}

The California Department of Transportation District 2 will host workshops to provide the public the opportunity to discuss the future of U.S. Highway 395.
-Doyle: May 24, 2017 from 6 to 7 p.m. at the Doyle Senior Center, 434685 Doyle Loop, Doyle.
-Janesville: May 25, 2017 from 7 to \(8 \mathrm{p} . \mathrm{m}\). at the Janesville Fire Hall, 463390 Main Street, Janesville.
Comments or questions may be submitted at these meetings, by telephone, email or by mail. Comments can be provided to Trina Blanchette by phone at 225 3478, e-mail address trina_blanchette@dot.ca.gov or sent to Caltrans District 2, Attention: Trina Blanchette, Office of System Planning, 1657 Riverside Drive, MS 3, Redding, CA 96001.


\begin{tabular}{ll|l|l|}
\hline Advertise & Eontact Us & Ewiker facebook \\
Subscribe & Donate & To search type and hit enter \\
\hline
\end{tabular}

\section*{aNewsCafe.com \\ Northern California's Premier Online News Magazine}

\section*{HOME NEWS OPINION LIVING EVENTS TALENT}

\title{
Offering the latest in optical fashion DR. JULIE GUSSENHOVEN, OD
}

\section*{Car talk: Caltrans Collects Comments to Improve a High Desert Highway}

By H.A. Silliman May 30, \(2017 \square 16\) Share/Save \(\boldsymbol{\square}\) •
Highway 395 runs along California's eastern side-a backbone highway figuratively-and a lonely one, too. Not as lonely as Nevada’s Highway 50-the so-called "Loneliest Road in America," but Highway 395 travels a route through country that is high desert and scrub, shuttered towns and isolated cattle ranches with those sweeping, circular wheel lines that water the heck out of alfalfa fields.


It actually slices through four states-California, Nevada, Oregon and Washington-serving as a route for goods movement, commuters and vacationers: some 1,300 miles that can be traversed at highway speeds in 23 hours.

At night-especially warm summer evenings when the stars are out full-bore-you can have that allAmerican road-trip experience: windows down, freedom flying in your hair. Unless you're listening to Coast-to-Coast AM radio show with George Noory. Then the dark side emerges: You suddenly realize-the highway is great place for an alien abduction.


The old railroad water tank in Madeline on Highway 395 is a landmark for travelers. Photo by Hal Silliman.

In the northern part of California's Outback, Highway 395 runs 203 miles, through Lassen and Modoc counties and a snippet of Sierra County. The state highway office is now studying the route to create a 20year plan to make improvements. Caltrans District 2 officials are currently holding workshops-four are

\footnotetext{
http://anewscafe.com/2017/05/30/car-talk-caltrans-collects-comments-to-improve-a-high-desert-highway/[6/12/2017 8:16:19 AM]
}
planned-in cities along the road-seeking citizens' comments.
Two Caltrans transportation planners, Trina Blanchette and Laura Rose, were recently dispatched to Alturas for one of the workshops, held in the city council chambers that had been decorated with aerial images of sections of Highway 395. To loosen tongues, the duo also brought a pan of homemade brownies for folks to munch on.

The workshop attended by 15 local residents-including elected and agency officials-was chockfull of happily-relayed comments as the group studied the road, north from near Susanville to New Pine Creek, at the California-Oregon border. In the workshop, three basic questions were asked: What works well? What works not-so-well? How can it be improved?

As Blanchette said, "We want to hear your ideas about the route-since you travel it a lot."


A windmill south of Madeline on Highway 395 reminds motorists that agriculture still thrives in the high desert. Photo by Hal Silliman.

After collecting public comments and doing other information gathering and analysis, Blanchette said Caltrans plans to issue a final "transportation concept report" in December.
"We'll identify potential improvements to make along the route," she said.
Between Susanville and New Pine Creek, Highway 395 more or less parallels the old Nevada-CaliforniaOregon railroad line-originally a narrow-gauge railroad that has gone through numerous owners since track was laid over a century ago and that helped establish now decayed towns like Litchfield, Ravendale, Termo and Madeline.


Only the small settlements of Likely and Davis Creek-along with the busy Modoc County seat Alturasremain with going businesses. And the basic fact that Highway 395 in these parts is truly a lonely road puts a premium on safety, services, information and way-finding needed by travelers-evident from the consensus of comments made during the hour-long meeting. Among improvements needed, according to the locals are:
- Consistent width to the roadway in parts north of Alturas. The road widens and constricts and widens again, without notice, and this is a hazard for motorists.
- More web-accessible cameras to show highway conditions-especially at the higher elevation mountain passes like Sugar Hill north of Davis Creek, and Sage Hen Summit, south of Likely.
- Signs that denote what services are available and where.
- The old-fashion "cinders" used on icy spots-rather than whatever Caltrans is using nowadays.
- Rest stops with bathrooms that have water-not the smelly "vault" toilets-and are open year-round. There is only one rest stop in 203 miles-chemical toilets located on a downgrade that's not very safe, participants said.
- Warnings for motorists that they are passing through "open range"-where the cows have the right-ofway. "People hit them and have died," noted one participant.
- Signs that indicate where people can access the rail trail-the alignment of the NCO Railroad from Susanville to near Likely that has been turned into recreation asset.
- In Alturas, 25 MPH signs through downtown, as traffic has a tendency forget the speed limit.
- Red zones at downtown Alturas intersections so it's easier for cross traffic to see oncoming autos on the highway.
- More pedestrian-activated crossing signals and well-marked crosswalks. These could even be solar
powered as in other parts of the state.

One little bit of information eeked out-from a participant and was augmented by Caltrans staff: Thel longstanding plan to transform the Highway 395 alignment from the Arizona-Mexico border to the Washington-Canada border into a super highway akin to Interstate 5. It even has a name: I-11
"Not going to happen in our lifetime," was the general consensus from the group. Still, the idea of a fi bore interstate knifing through Eastern California creates wild surmise, and Blanchette said she will include a notation about I-11 that "the proposal is out there" in the new report being created. A draft ( report will be available by fall 2017 here.
H.A. Silliman is a freelance writer and communications consultant. He served as the VP of Communications for the San J ose Silicon Valley Chamber of Commerce and holds a B.A. from the University of the Pacific and an M.A. from Sacramento State University.

Copyright 2017. © All rights reserved.

All photos by H.A. Silliman

H.A. Silliman is a freelance writer and communications consultant. He served a: VP of Communications for the San J ose Silicon Valley Chamber of Commerce an holds a B.A. from the University of the Pacific and an M.A. from Sacramento Ste University.


Comment Policy: We welcome your comments, with some caveats: Please keep your comments positive and civilized. If your

\section*{US 395 TRANSPORTATION CONCEPT REPORT (TCR)}

\author{
Public Workshops
}

Alturas, Doyle, and Janesville, California
May 15, 24, and 25, 2017

\section*{Agenda}
-What is a TCR?
-TCR timeline
-Characteristics of US 395
- Input from you

\section*{What is a TCR?}
- 20-year transportation plan
- Looks at other plans (regional transportation plans, for example)
- Includes data analysis
- Multi-modal
- Identifies issues and potential improvements
- Includes involvement of:
- Public
- Local transportation commissions
- Tribes
- Other governmental agencies
- Helps in selection of projects or project features

US 395 TCR Timeline

\section*{Spring 2017}

Data Collection
-Traffic volumes
- Other reports
- Public workhops

Spring/ Summer 2017 Analysis
- Address comments
- Additional analysis

Summer/ Fall 2017 Draft TCR
- Make available to the public - Make available to the pub comission (LTCS)

December 2017
Final TCR
Final TCR
- Adress remai
comments

Characteristics of US 395
- Goes through 4 states: California,

Nevada, Oregon and Washington
- 1,300 miles long
- Serves many purposes
- Recreational travel
- Goods movement
- Commuter route


US 395 in District 2
- Goes through Sierra, Lassen and Modoc Counties
- 203 miles long (3 in Sierra, 140 in

Lassen, 60 in Modoc County)
- Serves many purposes:
- Goods movement
- Commuter route
- Recreational route


US 395 in District 2
US 395 has different characteristics, depending on location


Alturas

1. Oregon State Line to Alturas

What works well?
What works not-so-well?
How can it be improved?





Leavitt Lake


SR 36 Junction
4. SR 36 Junction to the Nevada State Line
- What works well?
- What works not-so-well?
- How can it be improved?



US 395 at County Road A25 (Herlong Junction)


US 395 at County Road A26 (Garnier Road)


Any additional comments?
Contact
Information
Any questions?
Trina Blanchette
Caltrans District 2
1657 Riverside Drive, MS 3
Next Steps
Redding, CA 96001
- More outreach
- Draft TCR (end of summer)
- Final TCR (end of year)

Phone: (530) 225-3478
Email: trina_blanchette@dot.ca.gov


Website:
http://www.dot.ca.gov/dist2/planning/conceptrpts.htm

\section*{US 395 SUMMARY OF COMMENTS}

This section contains a summary of comments received during the public outreach period for the US 395 TCR. Below is a list of acronyms used within the section.

\section*{Acronyms:}

ADA - Americans with Disabilities Act of 1990
CA MUTCD - California Manual on Uniform Traffic Control Devices
CCTV - Closed-Circuit Television
CHP - California Highway Patrol
CMS - Changeable Message Sign
CR - County Road
FCI - Federal Correctional Institution
HAR - Highway Advisory Radio
HWY - Highway
ITS - Intelligent Transportation System
LAS - Lassen
LCTC - Lassen County Transportation Commission
MCTC - Modoc County Transportation Commission
MOD - Modoc
NB - Northbound
RTC - Regional Transportation Commission
RTP - Regional Transportation Plan
RWIS - Road Weather Information System
SB - Southbound
SIAD - Sierra Army Depot
SR - State Route
US - United States

\title{
SUMMARY OF COMMENTS - LASSEN COUNTY TRANSPORTATION COMMISSION US 395 Transportation Concept Report
}

\section*{Existing Conditions}

Traffic and Passing
- From 4-6 PM, there is significant commute activity along the route: to and from SIAD, the prisons, Susanville and Reno.
- The speed differential ( 55 mph for trucks, 65 mph for vehicles) impacts operations and increases the demand for passing.
- Some drivers are unfamiliar with the route and there are many recreational travelers.
- Long flat stretches with heat waves in the summer and dips in highway may be problematic for passing decision-making. Drivers might be using poor judgment.
- The LCTC's primary concerns are traffic violations and user safety.

Goods Movement on US 395
- US 395 in Lassen County is identified as a major truck route on the National Highway System.
- Freight traffic along US 395 consists of military equipment, heavy haul, oversized, agricultural/dairy, commercial (such as Walmart), delivery and wide load.
- Agricultural commodities are transported along the route. Agricultural vehicles enter and exit the highway from and to adjacent farms.
- SIAD is a major freight trip generator and is a major customer for Fed Ex on the west coast.
- There are military transports to and from SIAD.
- Reno is a major distribution hub.
- Sometimes incidents, work zones, farm vehicles, pedestrians, etc. can impede efficient flow of freight on the existing two-lane facility.
- Termo-Grasshopper Road is a cutoff for trucks because it is shorter than continuing to Alturas, then heading west on SR 299. Wear and tear on county roads adds cost to the county.
- CR A3 in Janesville is also used as a cutoff for trucks.

\section*{Other Comments on Existing Conditions}
- US 395 serves as an alternative to the I-5 corridor. This past winter, when I-5 was closed, US 395 was used as an alternative. Also when I-80 is closed, US 395 is sometimes an alternative.
- Along some sections, the pavement is in poor condition.
- There is demand for park and ride facilities along the route.
- There is no alternative location during the current closure of the Honey Lake Valley Roadside Rest Area.
- US 395 is sometimes impacted by inclement weather such as snow, ice and/or high winds.

Suggestions for US 395
- Lassen County's 2012 RTP identifies the long-term vision of the route as a four-lane expressway from SR 70 to SR 36.
- Four lanes would improve operations and reduce the need for passing to occur into the opposing lane.
- There is economic benefit to having four lanes. It will create opportunities for this area.
- "Every person in the County wants four lanes."
- We want four lanes. We've just been waiting for Caltrans to do it.
- There have been discussions about four lanes since 1970s/1980s. The "turn on headlight section" was implemented in the meantime. Now it's 40 years later and we still need four lanes. Headlights are not a sufficient solution.
- Don't wait another 20 years. Expansion needs to happen sooner than 20 years from now.
- Four lanes has been the concept for a long time, is this plan really going to make a difference?
- If we say OK to passing lanes, then you do passing lanes and you forget the four lanes concept. Passing lanes takes pressure off of Caltrans.
- It would be best to have four lanes, if not, then let's do passing lanes and left turn pockets.
- Interim measures such as lengthening existing passing lanes are also appropriate.
- Need more passing lanes.
- Improve US 395 to support additional volumes of freight traffic.

If more solid yellow lines are painted, then vehicles would get stuck for long periods behind trucks. Passing opportunities are based on sight distance.
- Provide accommodations for cross traffic (agricultural, pedestrian and vehicle) in rural communities along the route.
- We want more park and rides, and we want Caltrans to pay for it \({ }^{1}\).
- Well-lit parking areas for freight trucks to "over-night" during periods of inclement weather are needed.
- Provide 24-hour, ADA-accessible alternative locations when roadside rest areas are closed.

1 Local, county and regional agencies are the responsible parties for park and rides. They partner with Caltrans for right-of-way and encroachment permits.

\title{
SUMMARY OF COMMENTS - LASSEN COUNTY BOARD OF SUPERVISORS MEETING
}

TUESDAY, JUNE 13, 2017
US 395 Transportation Concept Report
The following is a summary of comments made by county supervisors and county staff.
- The speed differential between cars and trucks creates a conflict.
- Thank you for holding a workshop in Janesville. This area serves as a bedroom community to Reno. It would help tremendously if it was four lanes. It would help make the County prosper.
- There are vehicle vs. game animal conflicts along US 395. Consider preventive measures such as fences or over- or under- passes. The presence of deer is most pronounced during migration periods.
- US 395 is the most direct route for commerce. Expanding it to four lanes would be ideal. If four lanes are not possible, then adding passing lanes would be necessary.
- Honey Lake Rest Area and Secret Valley Rest Area are both closed right now. Try not to close them at the same time. Add more rest areas along the route as there are long distances without facilities. Consider constructing one near the SR 70 junction or near the agricultural inspection station.
- One of the supervisors asked, "What is the common theme from the Doyle and Janesville public workshops?" Staff responded that the general public sentiment is that US 395 needs to be improved, mostly that the public has expressed an interest in making the highway four lanes or adding passing lanes. Community members have expressed concern over the speed differential between vehicles and trucks.

\title{
SUMMARY OF COMMENTS - ALTURAS PUBLIC WORKSHOP \\ MONDAY, MAY 15, 2017 \\ US 395 Transportation Concept Report
}

\section*{General Comments}

Rest Areas and Truck Parking
- There are long stretches between Susanville and Alturas and between Lakeview and Alturas without a designated place for fire service trucks, other trucks or passenger vehicles to rest.
- Truck parking used to occur in the veterans park but it is no longer open.
- After 10pm, no truck parking facilities are available.
- There is a rest area near Madelaine Plains.
- Provide real rest stops - With running water and power, keep heated in the winter, and keep them open year-round. Include truck parking so that trucks won't park in Alturas business' parking lots \({ }^{1}\).
- Two locations preferred: about halfway between Lakeview and Alturas, and near Likely or Ravendale (consider the area near the airport in Ravendale).
- The rest area near Burney on SR 299 should be open year-round and have water and flush toilets \({ }^{2}\).
- Honey Lake Rest Area works well. Can there be something similar north?

Traveler Information
- There is no traveler information north of Susanville \({ }^{3}\). There might be an RWIS, or a HAR sign in Alturas.
Note: There is a HAR sign and flasher north of Alturas at the Maintenance Station in both directions of travel (MOD 23.7). There is no RWIS in Alturas. There is a possible future CCTV at the SR 299/US 395 Junction (MOD 22.8). There is an existing HAR flasher for both directions of travel at the south end of Alturas (MOD 20.9). There are possible future CMSs facing southbound traffic north of Alturas and south of Alturas (MOD 27.1 and 20.9). In northern Lassen County, there are possible future RWIS elements at Termo (LAS 115.2) and Sage Hen (LAS 133.3). There is also a possible future CCTV for Sage Hen Summit (LAS 133.3).
- Provide better traveler information from Madelaine (LAS 129.3) to Susanville (LAS R61.1) to show weather.
- Would like advanced warning for icy conditions because there is sometimes ice in the

\footnotetext{
1 According to the state's Joint Economic Development Plan for Rest Areas, funding constraints currently prevent consideration of new rest areas that are not located on the major interstate highways, including Interstates 5, 10, 15, 40 and 80. Rest areas in remote areas are targets for crime and vandalism. The department's goal is to provide a safe, clean, accessible and economical facility. These areas make it difficult to balance the goals of the program.
2 Many of the older rest areas in higher altitude areas such as the one near Burney do not have the capability of operating during the winter due to the freezing temperatures and winter conditions. Major rehabilitation of the water, electrical and septic systems would be needed.
3 Public input is welcome for specific locations. New locations are based on TMC operational needs, maintenance needs and public input.
}

Madeline Plains area (LAS 112.0-130.0) \({ }^{4}\).
- Provide additional CCTV elements between Susanville and Oregon that the public can view on their phones. Suggested locations include Sage Hen Summit (LAS 133.3) and in the Sugar Hill area (MOD 47.0-50.0).
- US 395 in Oregon is designated and signed at the border as "The Oregon Outback Scenic Byway." Install a sign telling SB travelers from Oregon that US 395 into California is the scenic byway known as "The Emigrant Trails Scenic Byway"?
- Appreciate the radar feedback speed sign before the Litchfield School (LAS 73.2) - it works well. It slows people down.

\section*{Limited Services}
- Would like emergency call boxes along highway between Litchfield and Alturas.
- Likely Mountain cuts off some cellular reception on US 395 in Likely, depending on carrier. Able to receive some radio station signals.
- No services south of Likely (MOD 3.0) for the next 70+ miles. There should be a sign at the north end of Likely warning southbound travelers, rather than at the south end, so they have an opportunity to get fuel or other services before exiting town.

\section*{Winter Travel}
- Snow and ice can be present in Likely (MOD 3.0) during the winter months.
- Moisture on bridges can create ice when there is cold air underneath.
- The cinders that Caltrans used to use on ice were more effective than the new ice melt.
- Pit River crossings (MOD R16.5, R19.6, 21.9, 26.2) can be icy and used to be cleared more effectively with cinders.

\section*{Road Geometry and Features}
- Would appreciate warning signs for different conditions
- Signs for icy conditions, such as north and south of Fitzhugh Creek Road (MOD 11.9 and MOD 13.1).
- Curves at bridges (MOD R19.6 and 26.2) and north and south of Fitzhugh Creek Road.
- Heading southbound in Litchfield (LAS 72.9), US 395 curves left, while county road A27 goes straight. It would be helpful to install chevrons or warnings at curve. Currently, two 40 mph curve warning signs are installed along both sides of the highway facing southbound traffic and three chevron signs.
- US 395 has an inconsistent width. It seems to be narrower at the top of passes and wider at lower elevations. Recommend consistent lane widths from Canada to Southern California especially in Modoc County.
- MCTC staff suggested installing guard rails in the Goose Lake curve/ Sugar Hill area (MOD 47.0-51.0).

\footnotetext{
4 An ice detection and warning system is not currently planned for that area. In general it is difficult to detect and warn motorists over that long of a stretch. Studies researching the effect of driver behavior for long distance icedetection systems are limited; anecdotal evidence says they aren't very effective. If there are recurring problems at very specific areas, generally less than 1-mile in length, an icy curve warning system is an option. We have been involved in research that concludes these site specific systems do reduce incidents.
}
- North and south of the north junction with SR 299 (MOD 28.3), the speed limit is 65 mph . Vehicles turning onto US 395 are accelerating from zero, if headed southbound, and from a slow speed if headed northbound. Vehicles traveling at 65 mph on US 395 come up on them quickly. Slowing down traffic on US 395 at SR 299 might be appropriate.
- A couple of meeting participants mentioned a roundabout, but most were opposed to having a roundabout at the SR 299 junction.
- Would be opposed to I-11 in this area because it would have impacts to the small town lifestyle. Very opposed to it going straight through the center of town.
- Other concerns about I-11 include impacts to public lands and wildlife.
- The east side of the Warner Mountains would be a better option, and more economical.

Speeds through Communities
- Concerned that monitoring speed will result in a higher posted speed limit. Recommend that speed is not monitored if there is risk of raising the posted limit.
- Maintain speed no higher than 25 mph through communities. Do not allow to go higher, as it has in other communities following speed studies.
- Speeds should be in the 25 mph range for the one-mile stretch through Likely (MOD 3.1), even though the school is no longer open. Pedestrians are present in the community.

Other
- Would like a sign on US 395 directing users toward the Modoc Line Rail Trail, and signage and parking at the two trail heads. Additional connections to the trail would be desirable (existing trailheads are a block or two off-route in Madeline and Likely: LAS 129.1 and MOD 3.1).
- Install cattle warning signs to inform drivers that the area around Madeline Plains (LAS \(117.4-131.0\) ) is open range and slow them down. There is an open range sign facing NB traffic at LAS 115.5.

\section*{Alturas}

Slow speeds down in Alturas
- Make the speed limit signs more visible on Main Street.
- Need more speed limit signs. Post a 25 mph sign every 2-3 city blocks to remind drivers to slow down. Also, people not familiar with the area are not seeing the existing speed limit signs.
- Railroad overpass (MOD R20.8) should have a 25 mph sign in a visible location (current location is not very visible).
- Good locations for speed limit signs would be in the vicinity of the grammar school, Alturas elementary schools, and the high school (MOD 22.6) on Main Street.
- Upgrade the school signs to the fluorescent high visibility color.
- NB and SB radar feedback signs are recommended to help slow speeds.

\section*{Bicycles and Pedestrians in Alturas}
- There should be more bicycle and pedestrian education in the schools and for drivers. School kids and drivers are not always aware of the rights and responsibilities of bicycles and pedestrians.
- There are fewer bicycles along Main Street in the summer because school is not in session.
- Improve visibility of bicycles and pedestrians for drivers. Lots of bicycle and pedestrian activity along Main Street due to proximity of schools.
- Consider the following bicycle and pedestrian features at all Main Street intersections and concentrations of pedestrians near schools:
- Thermoplastic decorative treatment in crosswalks, bulb-outs at corners, stop signs, and solar-powered motion-detection bicycle/ pedestrian beacons.
- One example of a actuated pedestrian beacon in Colusa was shown to Caltrans representatives at the workshop (see picture below):

- Examples of other locations in California with successful pedestrian beacons are in Redding near the Enterprise High School and in the old town of San Dimas (it is solarpowered and activated through motion detection of bikes and pedestrians and lights the crosswalk).
- New street lights were installed in Alturas. It is too bright and now the pedestrians don't stand out. The street lights are so bright it looks like an airport runway.
- Make Main Street two lanes with a center turn lane and bike lane or bike path, like Los Molinos. Back in the 1920s, Main Street was two lane with angled parking in the middle.

Lake Railway Crossing in the Center of Town (MOD 22.5)
- Various crossing elements are frequently broken, for example, the lights or the arm.
- Trains pass through about twice per week to and from Lakeview, Oregon (town in Oregon about 15 miles north of the state line).

\section*{Alturas - Other}
- Alturas Community Events
- Like using Main Street for community events and parades. Would like to have parades on entire road, not just one lane. Keep the ability to hold events and the ability to detour around the events. Bear this in mind if changes are made to US 395 (for example, if I-11 is constructed through town).
- Decorating Caltrans trucks and having them participate in the Christmas parade was popular with the community. Caltrans should do it again. Good for public relations.
- Create snow recovery areas because the current process results in stacking of snow in the middle of the road, which can make it difficult to see the lane striping.
- There is a high proportion of government employees in the Alturas area: USFS, Cal Fire, High School and seasonal employees. On Fridays, many public employees do not work and there is a noticeable decrease in traffic on roadways.
- The times when a signal might be needed on Main Street are on weekdays at 8AM, noon and 4PM.
- At the cross streets in Alturas, drivers can't see onto Main Street until they edge out onto Main Street, for example, at 1st Street (MOD 22.1).

\title{
SUMMARY OF COMMENTS - DOYLE PUBLIC WORKSHOP \\ WEDNESDAY, MAY 24, 2017 \\ US 395 Transportation Concept Report
}

\section*{Existing Conditions}

Passing/Speed
- The differential speed limit of 55 mph for trucks and 65 mph for other vehicles results in getting stuck behind trucks and drivers violating passing laws. It is a public health issue.
- CHP receives multiple calls daily about drivers near Herlong and Doyle. There is only one CHP unit for this area.
- Some community members expressed that they did not feel comfortable passing within some sections currently striped for passing.
- Many drivers make poor passing decisions.
- When the workshop participants were asked, who had at some point been passed by a vehicle passing on a double or single solid yellow line on US 395, every person in the room raised their hand.
- Shoulders have been widened along some sections of US 395, which has helped in some situations where drivers are passing illegally. Also helpful is that the local community members are familiar with the road.

Turn Pockets and Signage
- Roads that might need turn pockets (right or left) and/ or signage (the following day, System Planning staff looked at the intersections indicated by the community. In addition to turn pockets, staff looked at signs for street names. Staff observations are provided in italics below. There could be additional intersections not on the list below that have small street name signs below the yellow intersection sign).
- Scott Road (LAS R15.97) - Road heads west from US 395. In the southbound direction, there is a right turn pocket. In the northbound direction, there is no left turn pocket. No sign for the road.
- North end Constantia (LAS R23.1) - left turn lane should be lengthened and widened. Road enters and exits US 395 along the west side of the highway. The north connection has left and right turn pockets in both directions. The southern connection (LAS R17.4) has a right turn pocket, but no left turn pocket and the sign is very small.
- Southern Connection Riverview Drive (LAS R24.8) - No signage in the northbound or southbound direction. Road enters and exits US 395 along the east side of the highway.
- Laver Crossing (LAS 26.6) - Has no left turn pocket. Community members wanting to turn left onto Laver Crossing from southbound US 395 sometimes pull over on the right shoulder to wait for traffic behind them to pass. The speeds approaching them from behind are very high. Disappointed that reflectors and other features residents installed at the intersection were removed. (Road heads east from US 395).
- Old Highway at top of hill Cowboy Joe Road (LAS 28.5 - Road to Bernice, also called CR 342). Road heads west from US 395. Skewed intersection located at the end of the southbound passing lane. No turn pockets.
- A-26 (LAS 29.8, Garnier Road- south entrance to SIAD/FCI Herlong) - Lengthen the right turn pocket (coming down the hill). Drivers turning southbound onto US 395 from A-26 jump into the left turn lane to start passing. Road heads east from US 395.
- The sign facing northbound traffic for Doyle Loop should be located further back to provide more time to slow down for the turn (LAS R23.1).

\section*{Weather}
- Improve culvert cleaning in the Leavitt Lake area to prevent ditches flooding into Leavitt Lake.
- Winds \({ }^{1}\)
- High winds in the Doyle area.
- High winds can blow trucks over. They might tip over into the oncoming lane.
- Highway should get closed before trucks tip over.
- When thinking about expanding the highway, consider that the greater the surface area of the roadway, the more work it would be to clear the ice.
- Ice and Snow
- During the last two years the plowing has gotten better, in general.
- Increase the frequency of snow plowing between the SR 70 junction and Doyle.
- Shaded sections of the route tend to be icy. Cut all the trees in the right of way to minimize the shade.

Highway and Roadside Maintenance
- There is a noticeable improvement in maintenance and pavement quality when crossing into Nevada.
- Appreciate the improved mowing along the sides of the highway during the last few years. It helps drivers see deer, deer see vehicles and helps to prevent fires. When mowing, get the older, larger sage brush as well.
- Across the highway from the Pozzolan rendering plant (LAS 9.9) there are two big holes in the deer fence along the northbound side. It looks like someone drove through it.

\section*{Trip Generating Facilities and Travel Patterns}
- SIAD (six miles northeast of US 395 along A-26, Garnier Road, LAS 29.8) is the largest employer and it is growing. There are a lot of trucks to SIAD.
- Residents whose houses are near US 395 are woken up at 5:30 am Mon-Fri when commuters to SIAD and the prisons drive past their homes. Also, the prisons are 24-hour facilities and traffic occurs during the shift changes.
- Commuters leaving SIAD for the day accelerate to highway speeds on the county roads, then they turn onto US 395 and accelerate to above the posted speed limit to get home as quickly as possible. This applies to the vanpools, too.
- CR A-25 (LAS 34.5) and A-26 (LAS 29.8) are the roads that lead to SIAD.

1 While the department currently has processes in place to detect high wind events and closes the highway when necessary, there are occasions when trucks may already be in the closure area when the event is triggered.
- About half of the workers at SIAD are from Washoe County and the other half are from Lassen County. Commuters from Washoe County approach from the south and turn right onto A-26 (LAS 29.8) in the morning and left from A-26 onto US 395 to head back to the south. Commuters from Lassen County generally come from the north and turn left in the morning from US 395 onto A-25 (LAS 34.5). During the afternoon commute, they turn right onto US 395 from A-25.
- When I-80 closes, traffic can increase on US 395. If I-80 is closed, some drivers use SR 70. If I-80 and SR 70 are both closed, drivers use US 395.
- It is critical that US 395 is not closed by incidents so that people can be transported to emergency medical care. If there is a serious medical problem, patients in Doyle are airlifted to hospitals in either Susanville or Reno (which are both equidistant from Doyle).

\section*{Suggestions}

\section*{Expansion}
- Widen US 395 to four lanes between SR 70 and SR 36 and install a barrier.
- Consider that there are lots of road connections and people living next to the highway when making decisions for US 395's future.
- Can a funding partnership be created with SIAD to help fund highway expansion? Since they are federal, there could be federal money for expansion. Is there any way that congressional representatives from Lassen and Washoe Counties can help?
- How much traffic is required for the highway to be expanded?
- There were plans to expand to four lanes, but it never happened.

Traveler Information
- Install more high wind signs.
- HAR Flashers
- Are located at SR 36 and SR 70 only.
- Provide some in between too, at Doyle and at the access roads to SIAD. If there is important highway information, SIAD and FCI employees do not get the information when an advisory is released during their shift.
- Especially important for wind warnings.
- Radio stations
- HAR does not work well in some areas since the AM signal is blocked by the hills \({ }^{2}\).
- Internet service is available, and smartphones get reception, but there is no radio signal.
- Use signs to warn drivers when there is an unexpected closure on US 395. There is no warning for drivers when US 395 is closed due to an incident \({ }^{3}\). Sometimes it takes hours for traffic to start moving again.

\footnotetext{
2 The signal range is set by the FCC not to exceed a specified signal strength beyond a coverage radius of 1.9 miles. These types of systems are designed for short range traveler information only. The department is required to operate within the legal broadcast limit for Traveler Information Stations (TIS), per the FCC (see 47 CFR 90.242).
3 There are currently CMS and HAR systems that warn motorists of closures to US 395, with additional fixed closure signs planned for deployment.
}
- Consider providing warning for drivers on US 395 near A-25 (LAS 34.5) and A-26 (LAS 29.8) during heavy commute times, perhaps with warning signs and blinking lights \({ }^{4}\).


4 Public input for specific locations is welcome for CMS and/or HAR solutions to warn motorists of closures at other decision-making points. Input from the public contributes to the District's procedures to determine strategic locations.

\title{
SUMMARY OF COMMENTS - JANESVILLE PUBLIC WORKSHOP \\ THURSDAY, MAY 25, 2017 \\ US 395 Transportation Concept Report
}

\section*{Existing Conditions}

Speeds and Passing
- Since trucks and trailers are limited to 55 mph , it causes backups and poor passing. It is better if trucks can go 65 mph .
- On the east coast, trucks can travel at 70 mph .
- In Nevada, the speed limit is 80 mph on I-80.
- Oregon recently increased the speed limit for trucks. Along US 97 in Oregon, the truck speed limit is 60 and the vehicular speed limit is 65 .
- Other states allow drivers to exceed the posted speed limit while passing. It is believed that this was an opinion as System Planning staff was unable to find evidence to substantiate this claim.
- Some passing lanes should be lengthened.
- CHP has a limited number of officers between the Nevada state line and Susanville.
- US 395 was recently repaved in the Bass Hill area (LAS 57.5). The merge sign at the end of the passing lane in the northbound direction might be placed too soon. If so, it causes people to merge back early even though there is still room to pass. The pavement delineation for Bass Hill was restriped as part of a paving project to comply with the current guidelines provided in the CA MUTCD. The lane drop design in CA MUTCD provides a longer transition area to allow vehicles more time to merge before the pavement width reduces down to a single lane.
- Heading north from Milford, there are double yellow lines, then it is striped for passing and there is a slight rise. Some workshop attendees expressed feeling uncomfortable passing, even though it is striped for passing.

\section*{Community Concerns}
- Residents who live close to the highway are concerned about their properties if the highway is expanded or re-aligned. Caltrans staff commented that a project like re-routing US 395 or expanding it to four lanes would require a full federal and state environmental review, including a community impact assessment.
- People pull out onto US 395 from private driveways. Would prefer a by-pass and to make US 395 a county road.
- Residents along A3 are opposed to truck traffic along A3 and also opposed to relocating US 395 onto the existing A3 alignment. They have organized against it in the past. There is a 65 foot truck limit on A3. Sherwin Williams trucks are within the limit and they frequently drive along A3.

US 395 North of the SR 36 Junction
- Standish (LAS 70.1) and Litchfield (LAS 72.9) have lower posted speed limits.
- Traffic volumes are very low past Litchfield, except there are still many trucks to the
biomass plant on Wendel Road (LAS R76.9).
- There was recently a long roadwork closure between SR 36 (LAS R61.1) and Standish (LAS 70.1). Now another long closure will happen with a repave project.

\section*{Other}
- Consider local road alternatives for detours, to avoid long closures and delays.
- Few bikes south of SR 36 or to the north.
- Emergency vehicles on 395 (high speed chases too).
- Event and holiday traffic to Reno.

\section*{Suggestions}

\section*{Expansion and Realignment}
- Expand the highway to four lanes because SIAD is expanding and there is increasing activity and employment.
- The CHP officer in attendance stated that two lanes should be provided in each direction. Install a center divider/distance barrier.
- Between Doyle (LAS R23.1) and Constantia Road (LAS R17.4), there is enough pavement width to make the highway four lanes and the terrain is good.
- Re-align US 395 around the east side of Honey Lake and through SIAD.
- Harmonize the truck and vehicular speeds instead of increasing the number of lanes

Passing
- Add passing lanes and turnouts and install signs stating that slower traffic must use turnouts.
- Install more signage notifying drivers of passing lane ahead. This can help calm people and they will choose to wait for the passing lane to pass.
- Consider lengthening passing lanes because it is challenging for a platoon of vehicles to pass a truck. If a truck passes in a passing lane section, then there usually is not enough remaining distance for any vehicles to pass after the truck has passed.
- At Bass Hill (NB: LAS 57.2-57.7 and SB: LAS 58.0-57.4), the passing lanes in both directions should be lengthened. Drivers get to the end quickly and there is a bottleneck.
- Lengthen the passing lane near Eagle Ranch (LAS 42.0).
- Below is a table showing locations and lengths of all passing/ truck climbing lanes along US 395, for reference:

Table 21: Passing and Truck Climbing Lanes on US 395
\begin{tabular}{|c|c|c|c|}
\hline Start PM & End PM & Length & Travel Direction \\
\hline LAS 9.0 & LAS 10.1 & 1.1 & Northbound \\
\hline LAS 11.7 & LAS R10.3 & 1.4 & Southbound \\
\hline LAS 26.6 & LAS 27.6 & 1.0 & Northbound \\
\hline LAS 29.8 & LAS 28.8 & 1.0 & Southbound \\
\hline LAS 35.1 & LAS 36.3 & 1.2 & Northbound \\
\hline
\end{tabular}

Table 21: Passing and Truck Climbing Lanes on US 395
\begin{tabular}{|c|c|c|c|}
\hline LAS 41.1 & LAS 40.2 & 0.9 & Southbound \\
\hline LAS 45.7 & LAS 46.5 & 0.8 & Northbound \\
\hline LAS 49.7 & LAS 48.8 & 0.9 & Southbound \\
\hline LAS 54.3 & LAS 55.3 & 1.0 & Northbound \\
\hline LAS 57.2 & LAS 57.7 & 0.5 & Northbound \\
\hline LAS 58.0 & LAS 57.3 & 0.7 & Southbound \\
\hline MOD 4.6 & MOD 4.8 & 0.2 & Northbound \\
\hline MOD 4.8 & MOD 4.6 & 0.2 & Southbound \\
\hline
\end{tabular}

Turn Lanes
- Improve left turns from US 395. Sometimes need to wait on the shoulder on the right side of the road for the traffic to clear before making a left turn. This applies to connections to homes and county roads.
- Right turn lane to the dump is needed (LAS 58.3).

\section*{Enforcement}
- More enforcement is needed when trucks travel above 60 mph which results in all vehicles speeding up.
- Issue more tickets to drivers who don't pull over when there are five or more vehicles following. Another workshop participant stated that a ticket can't be issued unless the driver fails to use a turnout.
- A lot of people do not know that the "turn on headlights" signs are regulatory. Change the wording to say that it is required and enforce headlight use. Headlights help a lot; install more "turn on headlights" signs along the route.

\section*{Wildlife}
- Deer are present through Janesville (LAS 52.6-LAS 55.5), A-25 to Milford (LAS 34.5-42.0) and in the Sage Hen/Smith Reservoir (LAS 133.3-134.3) area. Use "major deer crossing area ahead" signs like those in Plumas County. Improve existing signage of deer zone in Sage Hen/Smith Reservoir area. Caltrans regularly receives comments from the public about deer. The above locations have been noted and included in our regular process to evaluate for wildlife crossing activity.
- The sides of the highway should be mowed back to the right of way, and especially to remove the buck brush.
- It is difficult to slow down for deer because the drivers behind you are traveling at high speeds.

\section*{Rest Area and Inspection Station}
- Many travelers use the facilities at the Honey Lake Rest Area (LAS 49.5). Why will it be closed this summer? The Honey Lake Rest Area on HWY 395 in Lassen County near Janesville, CA, will be CLOSED starting at 7:00 AM, May 31, 2017. Closure of the rest area is necessary in order to transition to the new wastewater system. Both the water and
wastewater systems will not be functional during this transition. The project is anticipated to be completed by July 31, 2017.
- It is inefficient to stop or slow down most of the vehicles at the agricultural inspection station (LAS R1.5), when they are usually just waved through. There should be a way for non-agricultural vehicles to be unaffected by the inspection station.

\section*{Other}
- See if SIAD can stagger their start and end times to spread out the commute traffic. When the state prisons opened, they were required to stagger shift times.
- Need tractor or agricultural vehicle signs. The time of the year with the most agricultural activity is from April to October.


\title{
SUMMARY OF COMMENTS - SUBMITTED VIA EMAIL OR TELEPHONE APRIL-JUNE 2017 \\ US 395 Transportation Concept Report
}

The following is a summary of comments the Office of System Planning received during the public outreach period for the US 395 TCR.

Nevada State Line to the SR 36 Junction - Existing Conditions
Traffic Volumes, Passing and Speed Differential
- The truck speed limit is only 55 mph and the vehicular speed limit is 65 mph , resulting in vehicles passing the trucks in the opposing lane and congestion.
- If passenger vehicles are exceeding the posted speed limit when approaching trucks, it causes backups quickly due to the speed differential.
- When trucks get to a passing lane, they tend to speed up with the other traffic.
- US 395 seems to be a major truck route, so there are a lot of trucks, which exacerbates issues stemming from the speed differential.
- Need enough passing lanes because of speed differential.
- Bass Hill Road (LAS 57.6) has no right turn lane (SB) and the left turn lane (NB) seems too short. The community member feels the passing lanes in both directions should be longer and it is difficult to see to the north and to the south when turning onto US 395 from Bass Hill Road.
- Drivers pass illegally, often these are drivers from other states.
- Some drivers begin to pass in advance of the presence of a passing lane, anticipating the ability to complete the passing maneuver within the passing lane.
- Drivers tailgate and use poor judgment when passing. Sometimes it is necessary to drive on shoulder or pull over to avoid an oncoming vehicle that is passing.
- Drivers sometimes pass on a solid yellow line because they get impatient waiting behind trucks for legal passing opportunities. Sometimes drivers pass, even when there is a "passing lane ahead sign."
- Improvements such as passing lanes and highway widening have helped.
- Some sections with a curve or a hill are striped for passing. Sometimes people not familiar with the highway pass at these sections. One location is the south end of Long Valley.
- Many years ago, the local newspaper reported that the state had acquired enough land to build a 4-lane freeway between Susanville and Reno, to be completed by 2000. Although traffic volumes have increased significantly over the last couple decades \({ }^{1}\), the only fourlane section today is from Hallelujah Junction to Reno.
- There has been a big increase in traffic between Reno and Susanville over the last ten years1.

1 AADT has increased since 1985, but peaked around the mid- to late- nineties. Since then, it has decreased slightly. For example, along Segment 2 (LAS R4.6-29.8), AADT was 3,950 in 1985, 6,200 in 1995, 5,500 in 2005 and 5,800 in 2015.

\section*{Travel Patterns}
- Long-distance, multi-state, north-south drivers sometimes use US 395 when I-5 is closed.
- For example, travelers originating in the state of Washington used US 395 to get to Tulare County, California during the 2016-17 winter because I-5 in northern California was closed.
- Traffic from other highways in the area, such as SR 139, SR 36 and SR 44 all funnel into US 395, which increases volumes along US 395.
- Reno is a major goods movement hub
- Sherwin Williams - 40 loads per day leave Reno and head north on US 395 through Lassen County.
- UPS is another company with a lot of trucks along US 395.
- Trucks use County Road A3 (LAS 51.9 to 70.1) as a cutoff to Alturas
- There has been and continues to be a lot of development in the Reno area.
- Every day many people make the trip between Reno and Susanville for work, appointments, errands, etc.
- Some people go to Reno every day for medical treatment (such as daily cancer treatment). Even less specialized medical care (such as routine eye appointments) needs to be done in Reno.
- The following example illustrates how services are limited in the Susanville area: There is no windshield repair company in Susanville area. Every day, 3-4 vehicles drive from the Reno area in anticipation of the need to replace windshields in Lassen County. Other types of businesses do the same thing.
- The heaviest traffic seems to be on Fridays and Sundays because people travel between Reno and Susanville for weekend trips.
- Many vehicles on the road are from Oregon and other parts of northern California.
- More traffic in the summer - RVs and people traveling for recreational purposes.

\section*{SIAD}
- SIAD is one of FedEx's biggest customers.
- SIAD will be hiring 500 more people. The current number of employees is \(1200-1500\), consisting of both government employees and contractors.
- There is a lot of temporary work on the base; for example, construction.
- Some commuters from SIAD and FCI Herlong speed along US 395 during their commute home.
- Morning and evening traffic noticeably increased \({ }^{2}\) after FCI Herlong was built and SIAD employment increased.

\footnotetext{
2 Actually, peak hour volumes are at the lowest they have been for at least 15 years. Construction started at FCI Herlong in 2002 and SIAD missions and employment increased in 2005 and 2007, respectively. At Hallelujah Junction (LAS 4.6), peak hour in both directions was 831 (2000), 909 (2003), 640 (2010) and 606 (2015). At Standish Road (LAS 51.87, B), peak hour in both directions was 760 (2004), 622 (2005), 689 (2010) and 575 (2015). (The reason for seemingly random years reported in this footnote is due to limited availability of data).
}

\section*{Park and Rides near Janesville \({ }^{3}\)}
- There is vandalism and other security concerns at the park and ride in Janesville (LAS 52.6). Many commuters choose to park in the Chevron lot instead because they feel like their vehicles are more secure.
- There is discussion about putting a park and ride at the A3/US 395 junction (LAS 51.9), but there is no business there at all and therefore less security for vehicles.

\section*{Wildlife}
- Wildlife near the highway have included deer, antelope, mountain lion, raccoons, bear, beavers, badgers, coyotes, hawks, owls and other small animals.
- Deer can be present at any location along US 395, but particularly from Chevron to Church Street (LAS 52.6-54.1).
- Another area where deer seem to be present in the areas near US 395 passing lanes. One example is near the Bass Hill Wildlife Area (LAS 55.0-59.0). Caltrans regularly receives comments from the public about deer. Locations identified by the public have been noted and included in our regular process to evaluate for wildlife crossing activity.
- At night, there is so much traffic it is difficult to see deer on the road.
- If deer are in the vicinity of US 395, sometimes a CHP officer will park along the side of the road to warn drivers of the deer about to cross the highway.
- In the 1980s and 1990s there were studies to track vehicle-deer collisions. Might be helpful to continue tracking.
- Caltrans is doing well clearing tall grass from the side of the roadway. You can see the deer.
- Deer fencing currently is installed near Hallelujah Junction (LAS 4.6), near the passing lanes south of Milford (LAS 40.6) and near Red Rock Road (LAS 14.3).

\section*{Other}
- There are limited opportunities for bicyclists and equestrians to cross US 395.
- When the sun is setting to the west, it is difficult to see southbound cars when pulling out from Church Street (LAS 54.1) or Sears Road (LAS 53.1) onto the highway.

\section*{Nevada State Line to the SR 36 Junction - Suggestions}

\section*{Capacity}
- Expand US 395 from SR 70 to SR 36 to four lanes. The number of semis and personal traffic should warrant an upgrade. Median widths would not need to be as wide as the four-lane section south of Hallelujah junction.
- The section of US 395 in southern California between Bishop and Lancaster improved when it was expanded to four lanes.
- Community members living adjacent to US 395 in the Milford area have expressed

3 Local agencies are the responsible parties for park and rides and then partner with Caltrans for right-of-way and encroachment permits.
concern over losing homes/ property if US 395 is expanded to four lanes.
- Need four lanes between Reno and Susanville, regardless of what adjacent property owners want.
- Even though money is tight, expanding to four lanes should be a priority.
- Keep the highway two lanes and do not expand to four lanes. Instead add passing lanes and left turn lanes between Susanville and the Nevada state line.
- Traffic volumes do not justify expansion, and expansion would encourage more traffic. More traffic could impact air quality, noise and wildlife.
- At least, there should be alternating passing lanes every two miles in each direction, so slower traffic (semis, personal vehicles towing trailers, etc.) can be passed.
- Re-align highway along the east side of Honey Lake. The shorter distance would save time, fuel and maintenance expenses. If this not possible, then make Susanville to Herlong four lanes.

\section*{Other}
- Lower the speed limit to 55 mph in order to help drivers avoid deer on the highway, and because there is a lot of cross traffic due to driveways and road connections.
- Prioritize installation of additional methods to keep deer and other big game off the highway. Consider methods such as eight-foot fencing, overpasses and/or underpasses to accommodate migratory wildlife. In studies, overpasses seem to perform better.
- Consider a pathway for pedestrian, horse and bicycle traffic separated from the vehicles.
- Consider providing space for a future light rail line along the right of way. Many people today cannot afford a car and rely on alternative modes of transportation, a trend which could increase into the future.

\section*{Susanville to Alturas}
- In the Litchfield area, when turning left off the highway, drivers approaching from behind travel at high speeds and try passing on the right side, even though there is no passing lane or shoulder. Consider extending the solid yellow line from LAS 73.4 to LAS 74.0.
- Consider deepening the Susan River under the Old Bridge (LAS 72.3). There was recently a fire nearby and fire fighters had to bring water all the way from Honey Lake. If the river channel were deepened, it could provide a closer source for firefighting purposes and it might improve flood control during the winter months.
- Improve condition and maintenance of the Secret Valley Rest Area (LAS 96.5).
- Human waste along the route near Likely (MOD 3.2).
- Sage Hen Summit (LAS 133.3)
- Travel lane is narrow and needs to be wider with paved shoulders.
- Culvert pipes extend out beyond the sides of the highway.
- Widen the lanes and shoulders along the section between Alturas and the SR 299 junction (MOD 23.3-40.6).

\section*{Alturas}
- Along the southern approach into town, provide more warning for drivers to slow down to the reduced speed through town. The county has a proposed project to install a radar feedback sign on the south end of town.
- There are 30 second delays at 4th, 8th and 10th Streets during lunch time, school start, lunch break, and end or at 5:00 PM. Recently the Alturas Planning Commission expressed concerns and the need for a traffic signal at 8th and US 395 (at the high school).
- The public has expressed to the MCTC their interest in Main Street traffic calming in Alturas. Some traffic calming suggestions include thermoplastic crosswalk application (like Trinity County), bicycle buffer and bicycle lanes.
- The public has commented to the MCTC about Alturas street lighting being too bright and/ or excessive. It impedes the ability to see pedestrians at and in the crosswalks at night.


\section*{PLUMAS COUNTY TRANSPORTATION COMMISSION COMMENTS}
- Long-term need to develop a formal transit stop near the Hallelujah Junction for transfers involving coordination among Sage Stage, Plumas Transit and RTC Public Transportation - Washoe.
- When I-80 closes due to winter storms, truck traffic comes up US 395 to get to SR 70 and then to the Central Valley.


\section*{Public Involvement Website Links}

Public involvement is an important part of the transportation planning process in California. The number and type of public involvement opportunities depend on the needs of a given transportation plan, program, or project. Through public workshops, hearings, open houses, task forces, citizen committees, commission meetings, and the media, the public is informed of transportation planning issues and given opportunities to comment on such plans or programs. These occur at the local, regional, or state agency levels.

The following websites provide more information about how Caltrans develops projects and links that can be used to get involved in the process.

Caltrans Website Links:

\section*{District 2}

Public Information: http://www.dot.ca.gov/d2/contactus.html or call (530) 229-0511
Caltrans Program/Project Management: http://www.dot.ca.gov/dist2/ppm.htm
Caltrans News Releases: http://www.dot.ca.gov/dist2/roadinfo.htm\#newsrelease

\section*{Information for How Caltrans Builds Projects:} http://www.dot.ca.gov/hq/oppd/proj book/

\section*{Other Websites:}

Environmental document summaries that have been prepared and posted during the project development stage can be found on the State Clearinghouse website
(http://www.ceqanet.ca.gov/QueryForm.asp). The site includes environmental documents submitted to meet the California Environmental Quality Act (CEQA) requirements and some federal National Environmental Policy Act (NEPA) documents. The information can be searched for by county or city, and will include project title, project location, lead agency name, contact information and project description.

How Speed Limits are set. The process for setting speed limits is in the California Legislative Code-Vehicle Code (Sections 22348-22366). The California Department of Transportation and Sierra, Lassen and Modoc Counties must follow the applicable government code when setting speed limits and cannot arbitrarily set speed limits. See the following website for additional information:
http://www.dot.ca.gov/trafficops/camutcd/docs/california-manual-for-setting-speed-limits.pdf

\section*{APPENDIX C: TRIBAL FACT SHEETS}

\section*{In Progress}

The Tribal Fact Sheets identify Native American communities located within the three counties that US 395 passes through. These include federally recognized and non-federally recognized tribes. The fact sheets also provide information about tribes that have identified tribal/ancestral land(s) near the US 395 corridor. Although it is difficult to pinpoint exactly where the boundaries begin and end, Caltrans worked with the identified tribes to put together the information contained in this appendix.

Caltrans' Director's Policy DP-19 affirms the importance of working with Native American communities to foster and maintain positive government-to-government relationships. As defined by DP-19, "Native American communities include lands held in trust by Tribal Governments, communities of non-federally recognized tribes, tribal members of California tribes living outside the exterior boundaries of a reservation or rancheria, and Native Americans that are not part of a California tribe living in California."

\section*{STATUS: Non-Federally Recognized Tribes}

Along with the federally recognized tribes that are identified, many non-federally recognized tribes are an important part of the history and cultural significance of the area. Some of these tribes are currently seeking federal recognition status. These tribes often represent distinct and separate cultures from federally recognized tribes and they continue their cultural traditions and their interest in protecting cultural resources throughout their indigenous territories. Caltrans' Director's Policy DP-19 affirms the importance of working with Native American communities to foster and maintain positive government-to-government relationships. "Native American communities include lands held in trust by Tribal Governments, communities of non-federally recognized tribes..., as well as, tribal members living outside the boundaries of a reservation or Rancheria."

The following Non-Federally Recognized Tribes are located within the vicinity that US 395 passes through.

\section*{XXX County}

\section*{APPENDIX D: ROUTE DESIGNATIONS}

\section*{FEDERAL DESIGNATIONS}

\section*{National Highway System (NHS)}

Added: 1995
Legislation: National Highway System Designation Act
The purpose of the NHS is to provide an integrated national highway system that serves both urban and rural America; to connect major population centers, international border crossings, ports, airports, public transportation facilities, and other major travel destinations; to meet national defense requirements; and to serve interstate and interregional travel.

\section*{Strategic Highway Network (STRAHNET)}

Added: 1990
Legislation: Federal Defense Act
The purpose of STRAHNET is to provide a network of highways that are important to the United States strategic defense policy and provide defense access, continuity, and emergency capabilities for defense purposes.

\section*{Surface Transportation Assistance Act (STAA) Network}

\section*{Added: 1982}

Legislation: Surface Transportation Assistance Act (STAA)
The STAAAct requires states to allow certain longer trucks on a network of Federal highways, referred to as the National Network (NN). The NN is comprised of the Interstate System plus the non-Interstate Federal-aid Primary System. "Larger trucks" includes (1) doubles with 28.5 -foot trailers, (2) singles with 48 -foot semi-trailers and unlimited kingpin-to-rear axle (KPRA) distance, (3) unlimited length for both vehicle combinations, and (4) widths up to 102 inches. STAA trucks are limited to the NN, Terminal Access Routes, and Service Access routes (STAA Network). For further information, regarding truck classifications, please see State Classifications-California Truck Route Classifications.

National Network (Federal): The National Network (NN) is primarily comprised of the National System of Interstate and Defense Highways, for example I-5. STAA trucks are allowed on the NN.

Terminal Access (State, Local): Terminal Access (TA) routes are portions of State Routes, or local roads, that can accommodate STAA trucks. TA allows STAA trucks to (1) travel between NN routes, (2) reach a truck's operating facility, or (3) reach a facility where freight originates, terminates, or is handled in the transportation process.

Service Access (State, Local): STAA trucks may exit the NN to access those highways that provide reasonable access to terminals and facilities for purposes limited to fuel, food, lodging, and repair, when that access is consistent with safe operation. The facility must be within one road mile of an exit from the NN and that exit must be identified by signage.

\section*{National Highway Freight Network}

\section*{Added: 2015}

Legislation: Fixing America's Surface Transportation Act (FAST Act)
The Fixing America's Surface Transportation Act (FAST Act), signed into law December 4, 2015, repealed both the Primary Freight Network and National Freight Network from Moving Ahead for Progress in the 21st Century Act (MAP 21), and directed the FHWA Administrator to establish a National Highway Freight Network (NHFN) to strategically direct federal resources and policies toward improved performance of highway portions of the U.S. freight transportation system.

The National Highway Freight Network (NHFN) will be used to strategically direct federal resources and policies toward improved performance of highway portions of the U.S. freight transportation system. The NHFN will include four subsystems of roadways: the Primary Highway Freight Network (PHFN), other interstate portions not on the PHFN, Critical Urban Corridors and Critical Rural Freight Corridors. These networks are currently under development and the designations are expected to be finalized by the end of 2017. After the initial designation, FHWA must redesignate the PHFS every five year, with up to three percent growth each time.

\section*{STATE CLASSIFICATIONS}

\section*{State Highway System}

Added: 1964
Legislation: California Streets and Highways Code-Sections 300-635
The intent of the legislature was to identify a set of routes in the State Highway System that serve the state's heavily traveled rural and urban corridors, connect the communities and regions of the state, and support the state's economy by connecting centers of commerce, industry, agriculture, mineral wealth, and recreation.

> \begin{tabular}{l}  The Interregional Road System is a subset of the State Highway System. \\ Interregional Road System (IRRS): \\ \hline Added: 1989 \\ Legislation: California Streets and Highways Code-Sections 163-164.2 (Transportation Blueprint for the Twenty- \\ first Century) \\ The IRRS was conceived as part of a larger effort to address the critical transportation funding and development \\ needs of the state. The legislation required the California Department of Transportation to define IRRS routes and \\ create an interregional road system plan. IRRS is a series of interregional state and highway routes, outside the \\ urbanized areas, that provide access to, and links between, the state's economic centers, major recreation areas, \\ and urban and rural regions. In 1989 the IRRS plan identified 81 state highway routes, or portions of routes, that \\ serve the interregional movement of people and goods. Most interstates were included in the system, and all major \\ interregional routes (conventional, expressway and freeway). Six additional routes have been added to the system \\ since that time by locally sponsored legislation, so there are currently 87 IRRS routes in statute. \end{tabular}

\section*{Strategic Interregional Corridors:}

Added: 2015 Interregional Transportation Strategic Plan (ITSP)
Legislation: Not in statute
The term Strategic Interregional Corridor is a phrase specific to the 2015 ITSP which identifies 11 strategic interregional corridors as the most significant in California for interregional travel. The vision and objectives in the 2015 ITSP are significantly different than the objectives of the 1998 ITSP. While the 1998 ITSP objective focused on connecting all urban, urbanizing, and high-growth areas to the trunk system at expressway or freeway standards, the 2015 ITSP focused on improving the interregional movement of people and freight in a safe and sustainable manner that supports the economy.

There are two Strategic Interregional Corridors identified in the 2015 ITSP within District 2:

\section*{Sacramento Valley - Oregon Corridor}

The Sacramento - Oregon Strategic Interregional Corridor links the Sacramento Valley to the North State and the Oregon border. This is an important connection between California and the states to the north and ultimately provides an international connection to Canada. The corridor supports the movement of people and freight, including recreational travel, and provides important connection for emergency response and resiliency for the region. Much of the Sacramento Valley is utilized for agricultural purposes and is dependent on this corridor for exporting products and importing farming and ranching supplies. In the north south direction, Interstate 5 and SR 99 are identified in the plan as Priority Interregional Facilities within the Sacramento Valley Oregon Corridor.

\section*{North Coast - Northern Nevada Connections Corridor}

The North Coast - Northern Nevada Connections corridor consists of two separate east-west northern California highway corridors between the coast to the eastern part of California and Nevada one of which is within District 2. This corridor extends from Humboldt County to Lassen County and on to Reno, and it includes State Route 44 in its entirety and portions of SR 299, 36 and US 395 . These routes are identified in the plan as Priority Interregional Facilities that provide access to communities throughout the region, support the regional economy and provide connection to emergency services and vital health and human services.

\section*{Life Line Routes}

Added: California Department of Transportation Strategic Plan-1994.
Legislation: Not in Statute
A Lifeline Route is a route of the State Highway System that is deemed critical to emergency/life safety activities of a region or the state. The route must remain open immediately following a major earthquake, or can be reopened fairly quickly by following a predetermined disaster response plan. The focus is on highly critical routes that allow for immediate movement of emergency equipment and supplies into a region or through a region.

Freeway and Expressway System (F \& E)
Added: Statues of 1959
Legislation: California Streets and Highways Code-Sections 253.1-253.8
The Statewide system of highways declared by the Legislature to be essential to the future development of California.
California Truck Route Classifications
Added: AB 66 (1983) and SB 2322 (1986)
Legislation: California Vehicle Code-Sections 35400-35414
"California Legal" trucks can use the STAA Network and California Legal routes. The route classifications are listed below and see additional STAA designations under "Federal Designations".

California Legal (State): California Legal routes are State routes that allow California Legal-size trucks. STAA trucks are not allowed on these routes because of limiting geometrics, such as sharp curves and/or lack of turnaround space.

California Legal-Advisory (State): California law allows regulatory prohibition of a 38-foot KPRA or greater where posted in black-on-white. However, many California legal routes cannot safely accommodate California Legalsize trucks with a KPRA less than 38 feet, due to limiting geometrics such as sharp turns and limited highway width. Although California Legal trucks may travel on these segments, the driver is legally responsible for unsafe offtracking (crossing the centerline or driving on shoulders and sidewalks).

Restricted (Federal, State, Local): Some route segments have restrictions on certain truck or loads, such as gross weight, number of axles or hauling of flammable materials or explosives. Restrictions on federal or State routes are listed on the Caltrans Truck Route List.

\section*{Intermodal Corridor of Economic Significance (ICES)}

Added:
Statues of 1994
Legislation: California Streets and Highways Code-Sections 2190-2191
The ICES is a subset of the National Highway System corridors that links intermodal facilities most directly, conveniently, and efficiently to intrastate, interstate, and international markets. To be included in the ICES system, a route should provide access between major freight intermodal facilities and serve freight traffic with the NAFTA countries of Canada and Mexico, as well as the Pacific Rim and other U.S. trade markets.

\section*{California Freight Mobility Plan 2015:}

The California State Transportation Agency (CaISTA) and the California Department of Transportation (Caltrans) developed the California Freight Mobility Plan (CFMP) to comply with provisions of the federal Moving Ahead for Progress in the 21st Century Act (MAP-21), which encouraged each state to develop a freight plan. Additionally, California Assembly Bill 14 (Lowenthal, 2013) requires a comprehensive freight plan that informs the immediate and long-range planning activities and capital investments of the state consistent with Map-21. The primary purpose of the plan was to identify freight routes and transportation facilities that are critical to California's economic growth and that are of high priority for investment to meet federal and state transportation and air quality goals.

The California Freight Mobility Plan (CFMP) established three tiers of major freight routes to help prioritize freight investments. Tier 1 is the highest priority, Tier 2 second highest, and Tier 3 third highest. All three tiers are of higher priority for freight funding than the much larger balance of the transportation system. It is expected that the preponderance of freight funding will be applied to projects along Tier 1 network segments and the gateways, hubs, and last mile connectors they serve.

Tier designated routes within District 2 include:
Tier 2 - Interstate 5
Tier 3 -SRs 44, 99, and portions of SRs 89 and 299

\section*{APPENDIX E: ENVIRONMENTAL CONSIDERATIONS}

Caltrans strives to maintain, operate, and improve the highway in a manner sensitive to the environmental setting. Environmental issues are addressed in the system planning process and the project planning and development process as early as feasible. Known environmental issues and concerns are included in a TCR so that planners, engineers, and other project development staff can incorporate environmental factors into project design from the outset.

Some of the key environmental considerations along US 395 are:

Recreational Land (Section 4(f))


Figure 25. Modoc Wildlife Refuge (MOD R20.4)

Table 22 shows post mile limits where pieces of US 395 pass through or are adjacent to Section 4(f) lands and the management agency responsible for those lands.

Table 22: Recreational Land (Section 4(f)) Along US 395
\begin{tabular}{|c|c|c|}
\hline Management Agency & Name & Post Mile Limits \\
\hline Bureau of Land Management & BLM & \begin{tabular}{l}
In Lassen County: R1.8-6.9, 7.9-8.8, 9.4-9.7, 9.9-R10.7, R11.0-R11.5, 13.4-14.6, 15.1-15.4, 58.0-59.0, R77.784.1, 89.5-104.8, 106.8-107.1, 115.7-117.8, 129.3-138.2 In Modoc County: 4.0-R15.9, 28.1-28.4, 40.0-40.4, 41.541.8 and 50.4-50.6 \\
- Fort Sage Off-Highway Vehicle Area (five miles east of LAS 26.6). \\
- Litchfield Wild Horse and Burro Facility (at LAS R77.7) \\
- Biscar Wildlife Management Area (seven miles west of LAS 92.7)
\end{tabular} \\
\hline U.S. Fish and Wildlife Service & Modoc National Wildlife Refuge & MOD R15.9-R20.8 \\
\hline U.S. Forest Service & Modoc National Forest & MOD 47.8-47.9, MOD 48.9-49.2 \\
\hline \multirow{4}{*}{California Department of Fish and Wildlife} & Hallelujah Junction Wildlife Area & SIE R0.0-LAS R1.5 \\
\hline & Doyle Wildlife Area & LAS 26.6-29.3 \\
\hline & Bass Hill Wildlife Area & LAS 56.3-58.9 \\
\hline & Biscar Wildlife Area & Seven miles west of LAS 92.7 \\
\hline California State Lands Commission & VAR & LAS 12.2-13.4, LAS 86.7-87.7, MOD 33.2-33.8 \\
\hline City of Alturas & Rachel Dorris Pioneer Park & MOD R20.98-R21.03 \\
\hline
\end{tabular}

Table 23 shows campgrounds located along US 395 and the entities responsible for their operation.

Table 23: Campgrounds Located near US 395
\begin{tabular}{|c|c|c|}
\hline Campground Name & Location & Responsible Entity \\
\hline Meadow View Equestrian Campground & Seven miles west of LAS R 24.1 & \multirow{5}{*}{Plumas National Forest} \\
\hline Black Mountain Lookout & Seven miles southwest of LAS 42.1 & \\
\hline Laufman Campground & Three miles south of LAS 42.1 & \\
\hline Conklin Park Campground & 12 miles south of LAS 42.1 & \\
\hline Antelope Lake & 18 miles south of LAS 52.6 & \\
\hline Mountain Meadow Ranch (boys and girls summer camp) & Two miles west of LAS 57.6 & Privately owned \\
\hline Ramhorn Springs Campground & Two miles east of LAS 100.3 & \multirow[b]{2}{*}{Bureau of Land Management} \\
\hline Dodge Reservoir & 25 miles northeast of LAS 108.5 & \\
\hline Plum Valley Campground & Five miles east of Davis Creek (MOD 42.8) & \multirow[t]{2}{*}{Modoc National Forest} \\
\hline Lassen Creek Campground & Five miles southeast of MOD 54.0 & \\
\hline Goose Lake State Recreation Area (Oregon) & One mile west of MOD 61.6 & Oregon State Parks \\
\hline
\end{tabular}

\section*{Farmland/Timberland}

From SIE R0.0 to approximately LAS 10.0, the route passes through farmlands of local importance and grazing lands. Important farmland along US 395 within Lassen County north of LAS 10.0 has not been mapped.

The entire length of US 395 within Modoc County, with the exception of Alturas, passes through areas having prime farmlands, farmlands of statewide importance, unique farmlands, farmlands of local importance and grazing lands.

\section*{Community Impacts/Environmental Justice}

The percent of the non-institutionalized population in Lassen and Modoc Counties that is above the age of 65 is higher than that within the state of California. Median household income for residents living in Lassen and Modoc Counties is much lower than income in the rest of the state. The percentage of individuals below poverty level is also higher in Lassen and Modoc Counties than the average for the state. It will be important to consider potential community impacts when projects are planned along US 395 in the future.

\section*{Visual Aesthetics}

Most of US 395 passes through a mostly undeveloped, high desert landscape. Aesthetics should be considered during future projects along US 395.

\section*{Cultural Resources}

US 395 is considered sensitive for cultural resources. A cursory archaeological survey of the US 395 right of way was conducted approximately 15 years ago and has been supplemented by numerous project specific surveys since that time. As of 2017 there are approximately 350 cultural resources recorded along this alignment. These cultural resources include both prehistoric and historic resources. Historic trails such as the Applegate and Lassen Trails follow the alignment in Modoc County while the Nobles Trail follows the alignment north of Honey Lake in Lassen County. It is possible that additional sites will be found when surveys are done for individual projects as the entire roadway has not been completely surveyed for cultural resources. In addition, geoarchaeological studies done for District 2 show evidence that the highway corridor within both northern Modoc and southern Lassen Counties has moderate to very high probability for both surface and buried cultural resources.

\section*{Floodplain}

Table 24 shows where US 395 passes through, or is adjacent to a floodplain, as identified in FEMA Flood Insurance Rate Maps.


Table 24: Flood Zones Along US 395
\begin{tabular}{|c|c|c|}
\hline Post Mile Limits & Water Body & Zone Category \({ }^{1}\) \\
\hline LAS 11.6-14.1, 15.0-R16.9, R18.6-R21.6, R22.3-R22.7 & Long Valley Creek & A \\
\hline LAS 14.1-14.3 & Red Rock Canyon Creek & A \\
\hline LAS 55.9-56.2 & Baxter Creek & A \\
\hline LAS R61.3-62.2 & Lake Leavitt Inlet Canal/Susan River & A \\
\hline LAS 62.5-64.8 & Susan River & A \\
\hline LAS 65.3-65.8 & Leavitt Lake & A \\
\hline LAS 71.2-72.7 & Susan River, Dill Slough and Woodstock Canal & A \\
\hline LAS 75.0-76.1 & Tanner Slough & A \\
\hline LAS 84.5-86.3 & Unidentified water body & A \\
\hline LAS 89.6-90.0 & Deep Creek & A \\
\hline LAS 92.7-93.5, 94.8-94.9 & Secret Creek & A \\
\hline LAS 104.5-128.6 & Unidentified water body & A \\
\hline MOD 3.4-3.8, R16.2-R17.1 & South Fork Pit River & A \\
\hline MOD 6.4 & Romero Creek & A \\
\hline MOD 9.3 & Big Juniper Creek & A \\
\hline MOD 10.6 & Little Juniper Creek & A \\
\hline MOD 12.1 & Fitzhugh Creek & A \\
\hline MOD R19.1-20.8 & North Fork and South Fork of the Pit River & A \\
\hline MOD 20.8-21.9 & North Fork Pit River & X \\
\hline MOD 22.1, MOD 35.8 & North Fork Pit River & A \\
\hline MOD 26.2-34.1 & North Fork Pit River, Parker Creek, Thoms Creek and Joseph Creek (the Zone A flood areas, flood discharge contained in culvert) & A and D \\
\hline MOD 53.6 & Lassen Creek & A \\
\hline MOD 54.5 & Willow Creek & A \\
\hline
\end{tabular}
\({ }^{1}\) Zone A-Special Flood Hazard Areas (SFHAs). Subject to Inundation by the 1\% Annual Chance Flood. The 1\% annual chance flood (100-year flood), also known as the base flood, is the flood that has a \(1 \%\) chance of being equaled or exceeded in any given year. The Special Flood Hazard Area is the area subject to flooding by the \(1 \%\) annual chance flood. No base flood elevations determined.
Zone X-Other Flood Areas. Areas of \(0.2 \%\) annual chance flood; areas of \(1 \%\) annual chance flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from \(1 \%\) annual chance flood.
Zone D- Other Areas. Areas in which flood hazards are undetermined, but possible. [Zone D boundary coincident with reservation boundary].
Note: Since there is no flood map printed for the portion of US 395 that runs from LAS 135.0-138.9, that section of US 395 was not evaluated for the potential for flooding.

\section*{Climate Change}

According to climate modeling, the regions surrounding US 395 could experience an increase in annual average temperatures by around five degrees, could experience more wildfires and less precipitation. The effects of climate change should be considered while developing future projects along US 395.

\section*{Geology/Soils/Seismic}

Rock types along US 395 include Pleistocene-Holocene nonmarine sedimentary rocks, PliocenePleistocene nonmarine sedimentary rocks, Tertiary volcanic rocks and Quaternary volcanic rocks.

\section*{Mineral and Geothermal Resources}

Lassen County contains Pozzolan deposits, which is used to create cement-like compounds. Semi-precious stones such as crystals, petrified wood, rose quartz and opals are known to occur in Lassen County. The county also contains geothermal energy resources.

Mineral resources in Modoc County include volcanic cinders, pumice and pumicite, and crushed stone. Some small amounts of gold and mercury have been known to occur in Modoc County. Lakebed deposits include peat, diatomia and salt. The county also contains geothermal resources for energy production.

\section*{Seismic}
- From the Nevada state line to south of Doyle, (LAS R22.0), there are a series of PreQuaternary and Quaternary faults associated with Diamond Mountains and Upper Long Valley that run parallel and to the west of US 395. US 395 crosses a series of unnamed PreQuaternary and Quaternary faults from LAS R 11.5-R17.0. In 1950, there was a 5.6 magnitude earthquake along the Fort Sage fault, which is just north of the route at Doyle.
- US 395 runs through the Honey Lake fault zone, which runs along most of the section between Doyle (LAS R24.0) and Janesville (LAS 53.5).
- In the vicinity of Bass Hill, the route passes through a series of unnamed PreQuaternary and Quaternary faults (LAS 56.0-59.0).
- From the SR 36 junction to Mud Flat, the route crosses unnamed PreQuaternary and Quaternary faults near Lake Leavitt (LAS 66.0), in Litchfield (LAS 74.0), and from LAS 78.5-83.0.
- In northern Lassen County, US 395 crosses the Nelson Corral fault (Las 120.0-124.0) and the Likely fault (LAS 131.5-134.5). In addition, US 395 crosses a series of unnamed Quaternary faults from LAS 125.5 to LAS 130.0.
- In Modoc County about halfway between the Lassen County line and Alturas, the route crosses a series of unnamed PreQuaternary and Quaternary faults. North of Alturas, the route crosses unnamed faults near the east end of Alturas (MOD 23.0), near Valley View Road (MOD 36.0), and from Davis Creek (MOD 46.0) to Willow Ranch (MOD 52.5). The route also crosses the Davis creek fault (MOD 46.0) and Goose Lake fault (MOD 59.561.0).
- The regions through which US 395 pass are likely to experience only mild to moderate shaking from anticipated future earthquakes.

\section*{Hazardous Materials}

There is a California Department of Toxic Substances Control (DTSC) Cleanup Site located about one mile west of US 395 on Scott Road (LAS 9.9).

The Sierra Army Depot (six miles northeast of US 395 LAS 29.8, along Garnier Road) has two active hazardous waste and substances cases with the California Department of Toxic Substances Control. One opened in 1986 and the other in 1995. Past uses that caused contamination include a degreasing facility; fire training areas; artillery, small arms and other firing range; fuel; illegal dumping; incinerator; construction landfill; domestic, hazardous and industrial treatment facility waste, maintenance and cleaning; paint and depaint facility; pesticide, insectide and rodenticide storage; recycling; warehousing; vehicle maintenance; and open burn and detonations. Potential contaminants of concern include explosives (8330 nitroaromatics, UXO, MEC), metals, nitrate, organochlorine pesticides ( 8081 OCPS), PCBS (unspeciated mixture, high risk, E.G. Aroclor 1254), petroleum, semi-volatile organics ( 8270 SVOCS), volatile organics (8260B VOCS), lead and munitions debris (MD). Potential media affected include aquifer used for drinking water supply, other groundwater and soil.

There is a Leaking Underground Storage Tank (LUST) cleanup site about . 5 miles west of US 395 off Church Street (LAS 54.2). Potential contaminant includes gasoline and potential media of concern is a well used for drinking water supply.

There are two LUST cleanup sites along the east side of US 395 in Standish (LAS 70.1).
There are two LUST cleanup sites near US 395 in Litchfield (LAS 72.7).
Just west of US 395 in Ravendale (LAS 108.5), there is a land disposal site that has an open cleanup status.

Just east of US 395 in Madeline (LAS 129.0), there is a land disposal site that has an open cleanup status.

In Alturas, there are open LUST cleanup sites near the SR 299 junction and near 4th Street.

\section*{Naturally Occurring Asbestos (NOA)}

No portions of US 395 are located in areas likely to contain naturally occurring asbestos.

\section*{Air Quality}

The three counties through which US 395 passes are unclassified or in attainment with state and national standards for all criteria pollutants, with the exception of all three counties having nonattainment status for state standards for PM10.

\section*{Noise}

Projects that generate significant levels of noise may require evaluation for impact on adjoining areas. Given the proximity to Honey Lake and the Modoc National Wildlife Refuge, noise studies may be required for some categories of projects. Although the majority of US 395 passes through a rural landscape with few sensitive noise receptors, some houses and schools are located along US 395, primarily in towns along the route. The greatest population densities along US 395 are
within the city of Alturas, and consideration of noise impacts on nearby residences, schools and businesses should be made.

\section*{Waters and Wetlands}

Long Valley Creek meanders roughly adjacent to US 395 from about the Nevada state line to near the agricultural inspection station just north of the Sierra-Lassen county line, where the waterway diverges from the route to the west. It is also close to the route from LAS 11.6-28.0. US 395 crosses over Long Valley Creek at LAS 15.8, LAS 26.2 and LAS 28.0. Wetlands associated with Long Valley Creek include freshwater emergent wetland, freshwater forested/ shrub wetland and riverine.

Table 25 lists additional wetlands along US 395.


Table 25: Wetland Locations and Types
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Location Description & & & & \\
\hline & & Post Miles & & & \\
\hline
\end{tabular}

\section*{Wild and Scenic Rivers}

No National Designated, National Study, California Designated, or California Special Rivers lie within the US 395 corridor.

\section*{Species Considerations}

The following tables shows threatened, endangered, candidate and rare species within or near Lassen and Modoc Counties. Exact locations would require additional studies at the time of future projects.

Table 26: Status of Species Known or Believed to Occur in Lassen and Modoc Counties
\begin{tabular}{|c|c|c|c|c|c|}
\hline Group & Name & Federal Status & State Status & \begin{tabular}{l}
CDFW \\
Status
\end{tabular} & County \\
\hline \multirow{4}{*}{Amphibians} & Cascades Frog & - & - & SSC & Lassen \\
\hline & Northern Leopard Frog & - & - & SSC & Modoc \\
\hline & Oregon Spotted Frog & FT & - & SSC & Modoc \\
\hline & Western Spadefoot & - & - & SSC & Lassen \\
\hline \multirow{26}{*}{Birds} & American Peregrine Falcon & Delisted & Delisted & FP & Lassen \& Modoc \\
\hline & American White Pelican & - & - & SSC & Lassen \& Modoc \\
\hline & Bald Eagle & Delisted & SE & FP & Lassen \& Modoc \\
\hline & Bank Swallow & - & ST & - & Lassen \& Modoc \\
\hline & Black Tern & & - & SSC & Lassen \& Modoc \\
\hline & Burrowing Owl & - & - & SSC & Lassen \& Modoc \\
\hline & California Gull & - & - & WL & Modoc \\
\hline & California Spotted Owl & - & - & SSC & Lassen \& Modoc \\
\hline & Columbian Sharp-Tailed Grouse & - & - & SSC & Lassen \& Modoc \\
\hline & Common Loon & - & - & SSC & Lassen \\
\hline & Cooper's Hawk & - & - & WL & Modoc \\
\hline & Double-Crested Cormorant & - & - & WL & Modoc \\
\hline & Ferruginous Hawk & - & - & WL & Modoc \\
\hline & Golden Eagle & - & - & FP; WL & Lassen \& Modoc \\
\hline & Great Gray Owl & - & SE & - & Lassen \& Modoc \\
\hline & Greater Sage-Grouse & - & - & SSC & Lassen \& Modoc \\
\hline & Greater Sandhill Crane & - & ST & FP & Lassen \& Modoc \\
\hline & Lesser Sandhill Crane & - & - & SSC & Lassen \\
\hline & Loggerhead Shrike & - & - & SSC & Lassen \& Modoc \\
\hline & Long-Billed Curlew & - & - & WL & Modoc \\
\hline & Long-Eared Owl & - & - & SSC & Lassen \& Modoc \\
\hline & Mountain Plover & - & - & SSC & Lassen \\
\hline & Northern Goshawk & - & - & SSC & Lassen \& Modoc \\
\hline & Northern Harrier & - & - & SSC & Lassen \& Modoc \\
\hline & Olive-Sided Flycatcher & - & - & SSC & Lassen \& Modoc \\
\hline & Osprey & - & - & WL & Modoc \\
\hline
\end{tabular}

Table 26: Status of Species Known or Believed to Occur in Lassen and Modoc Counties
\begin{tabular}{|c|c|c|c|c|c|}
\hline Group & Name & Federal Status & State Status & \begin{tabular}{l}
CDFW \\
Status
\end{tabular} & County \\
\hline & Prairie Falcon & - & - & WL & Modoc \\
\hline & Purple Martin & - & - & SSC & Modoc \\
\hline & Sharp-Shinned Hawk & - & - & WL & Modoc \\
\hline & Short-Eared Owl & - & - & SSC & Modoc \\
\hline & Swainson's Hawk & - & ST & - & Lassen \& Modoc \\
\hline & Tricolored Blackbird & - & - & SSC & Lassen \& Modoc \\
\hline & Western Snowy Plover & FT & - & SSC & Modoc \\
\hline & White-Faced Ibis & - & - & WL & Modoc \\
\hline & Willow Flycatcher & - & SE & - & Lassen \& Modoc \\
\hline & Yellow Warbler & - & - & SSC & Lassen \& Modoc \\
\hline & Yellow-Breasted Chat & - & - & SSC & Modoc \\
\hline & Yellow-Headed Blackbird & - & - & SSC & Lassen \& Modoc \\
\hline & Blue Chub & - & - & SSC & Modoc \\
\hline & Cow Head Tui Chub & - & - & SSC & Modoc \\
\hline & Eagle Lake Rainbow Trout & - & - & SSC & Lassen \\
\hline & Eagle Lake Tui Chub & - & - & SSC & Lassen \\
\hline & Goose Lake Lamprey & - & - & SSC & Modoc \\
\hline & Goose Lake Redband Trout & - & - & SSC & Modoc \\
\hline & Goose Lake Sucker & - & - & SSC & Modoc \\
\hline Fish & Goose Lake Tui Chub & - & - & SSC & Modoc \\
\hline & Hardhead & - & - & SSC & Modoc \\
\hline & High Rock Spring Tui Chub & - & - & SSC & Lassen \\
\hline & Lahontan Lake Tui Chub & - & - & SSC & Lassen \\
\hline & Lost River Sucker & FE & SE & FP & Modoc \\
\hline & Modoc Sucker & FE & SE & FP & Lassen \& Modoc \\
\hline & Pit Roach & - & - & SSC & Lassen \& Modoc \\
\hline & Sacramento Perch & - & - & SSC & Modoc \\
\hline & Shortnose Sucker & FE & SE & FP & Modoc \\
\hline Insects & Carson Wandering Skipper & FE & - & - & Lassen \\
\hline \multirow{11}{*}{Mammals} & American Badger & - & - & SSC & Lassen \& Modoc \\
\hline & California Wolverine & - & ST & FP & Lassen \& Modoc \\
\hline & Fisher - West Coast DPS & FPT & SC (T) & SSC & Lassen \\
\hline & Gray Wolf & FE & SE & - & Lassen \& Modoc \\
\hline & Oregon Snowshoe Hare & - & - & SSC & Lassen \& Modoc \\
\hline & Pallid Bat & - & - & SSC & Lassen \& Modoc \\
\hline & Pygmy Rabbit & - & - & SSC & Lassen \\
\hline & Sierra Nevada Bighorn Sheep & FE & SE & FP & Modoc \\
\hline & Sierra Nevada Mountain Beaver & - & - & SSC & Lassen \\
\hline & Sierra Nevada Red Fox & - & ST & - & Lassen \& Modoc \\
\hline & Sierra Nevada Snowshoe Hare & - & - & SSC & Lassen \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Counties} \\
\hline Group & Name & Federal Status & State Status & CDFW Status & County \\
\hline & Townsend's Big-Eared Bat & & SC (T) & SSC & Lassen \& Modoc \\
\hline & Western Red Bat & - & & SSC & Lassen \\
\hline & Western White-Tailed Jackrabbit & - & & SSC & Lassen \& Modoc \\
\hline Reptiles & Western Pond Turtle & & & SSC & Lassen \& Modoc \\
\hline \begin{tabular}{l}
CDFW - Ca \\
FE - Feder \\
FP - Fully p \\
FPT - Fede \\
FT - Federaly \\
SC - State \\
SE - State \\
SSC - Speci \\
ST - State \\
WL - Watch
\end{tabular} & \begin{tabular}{l}
rnia Department of Fish \& Wildlife listed as endangered ected \\
y proposed (threatened) \\
listed as threatened \\
didate (T or E) \\
d as endangered \\
of special concern \\
d as threatened
\end{tabular} & & & & \\
\hline
\end{tabular}

In consideration of widening US 395, early scoping and planning will be necessary to avoid and minimize adverse impacts to significant cultural resources and endangered species throughout the corridor. In addition, over/under crossings must be considered at strategic locations for various large mammals that migrate throughout the region, including but not limited to, antelope, deer, elk, and big-horn sheep.

Fish Passage
There are no known fish passageway barriers along the route.

\section*{Habitat Connectivity}

Natural Landscape Blocks are large areas that tend to be mostly natural and ecologically intact, relatively well conserved and are high in biological resource values. Essential Connectivity Areas are areas essential for ecological connectivity between Natural Landscape Blocks. The route passes through essential connectivity areas from Long Creek (LAS 15.9) to LAS R22.2 (. 9 miles south of Doyle Road). There is another essential connectivity area from Doyle (LAS R24.1) to LAS 44.0.

\section*{APPENDIX F: HISTORICAL MARKERS NEAR US 395}


Figure 26. Standish Hall (LAS 70.1)

The following table lists historic places near US 395 that are contained in the National Register.
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ Table 27: National Register of Historic Places: Listed Properties Near US 395 } \\
\hline County & \multicolumn{1}{|c|}{ City } & \multicolumn{1}{|c|}{ Post Mile } & \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Address } \\
\hline Lassen & Standish & LAS 70.1 & Standish Hall & \(718-820\) US 395 E \\
\hline Lassen & Litchfield & LAS 72.8 & Willow Creek Rim Archaeological District & Address Restricted \\
\hline Modoc & Alturas & MOD 22.2 (off-route) & NCO Railway Depot & East and 3rd Streets \\
\hline Modoc & Alturas & MOD 22.3 (off-route) & Sacred Heart Catholic Church & 507 E. 4th Street \\
\hline Modoc & Alturas & MOD 22.5 & \begin{tabular}{l} 
Nevada-California-Oregon Railway \\
Company General Office Building
\end{tabular} & \begin{tabular}{l} 
619 North Main \\
Street
\end{tabular} \\
\hline
\end{tabular}


Figure 27. Nevada-California-Oregon Railway Company General Office Building (MOD 22.5)

California Historical Landmarks
Modoc County
NO. 16 INFERNAL CAVERNS BATTLEGROUND, 1867 - This is the site of the battle between U.S. troops and Shoshone, Paiute, and Pit Indians on September 26 and 27, 1867. The Indians took refuge in a series of caverns located at the top of a rocky slope. Over a third of the command was killed or wounded in the battle, six soldiers were buried at the foot of the slope.
Location: Ferry Ranch on Co Rd 60, site is 1 mi SW of Ranch, 6.5 mi NW of Likely
NO. 109 CHIMNEY ROCK - The chimney was cut out of the solid rock by Thomas L. Denson, who came west by the way of the Santa Fe Trail in 1852. In 1870 Denson built his cabin, the second building to be erected in the Pit River Valley, alongside a pyramid-shaped rock, cutting the fireplace and flue out of the solid rock itself.
Location: Beside RR track along State Hwy 395 (P.M. 30.3), 77 mi N of Alturas
NO. 546 APPLEGATE-LASSEN EMIGRANT TRAIL (FANDANGO PASS) - This spot marks the convergence of two pioneer trails used by emigrants during the years 1846-1850. The Applegate Trail, established in 1846, led from the Humboldt River in Nevada to the Willamette Valley in Oregon. The Lassen Cutoff, established by Peter Lassen in 1848, turned south at Goose Lake to the northern mines and settlements of California.
Location: Fandango Pass, 10.8 mi E of State Hwy 395 on Fandango Pass Rd (Co Rd 9), 9.2 mi W of Fort Bidwell

\section*{Lassen County}

NO. 565 PETER LASSEN GRAVE - In memory of Peter Lassen, the pioneer who was killed by the Indians April 27, 1859, at 66 years of age.
Location: 2550 Wingfield Rd via Richmond Rd, 5 mi SE of Susanville


Figure 28. Noble Emigrant Trail Sign (LAS 81.2)

The following is text printed on an interpretive sign at the historical marker:
Before the Nobles Trail
American Indians, including the Kammu Tukadu and Wadakhut bands of the Northern Paiute peoples, played a key role in the Euro-American overland migration. Although some of the emigrant trails were new, many mirrored earlier Indian routes that followed major river systems and crossed imposing mountain ranges.

Initially American Indians assisted and guided explorers and emigrants. However, as time progressed and the number of travelers increased, conflict and confrontations escalated.

Nearly 500,000 emigrants and their thousands of cattle, horses, and sheep, traveled west of the Mississippi River into and across American Indian traditional homelands from 1840 to 1860.

Negative impacts, including loss of traditional lifestyles, undermined the American Indians' political and economic independence. Today, the local Indian peoples use natural resources near the Nobles Trail to continue aspects of their traditional culture.

Another historical marker at the location:

\section*{Nobles Trail - Paved with Cobble Stone}
"It is the worst road we have traveled on the whole route... It is completely paved with cobble stone. The wagon would roll for a mile at a time without touching the ground." -William Gregg McPherson, Sep 23, 1859.

Location: On State Hwy 395 (P.M. 80.5), 76 mi N of Litchfield

NO. 758 FORT JANESVILLE - Thoroughly terrified by 'The Ormsby Massacre,' the people of Honey Lake valley built themselves a stockade for protection from an Indian attack that never materialized.
Location: 0.1 mi N of Janesville Elementary School, Main St, Janesville

\section*{Other Historical Markers}

Willow Ranch
Location: Marker is near Willow Ranch, California, in Modoc County. Marker is at the intersection of Willow Ranch Road and South Willow Ranch Road on Willow Ranch Road.

Inscription: This monument was erected in honor of all the people who were part of what once was a thriving community when the Crane Creek and Willow Ranch Lumber Companies were in operation here from 1929 to 1959. The land was given to Modoc County by the family of Mary Louise Dougherty in her memory.

In the early 1940's Willow Ranch was a thriving lumber mill. Logs were cut on the west side of Goose Lake. The logs were formed into rafts of 200,000 board feet and towed across the lake by boats like this one. It took five hours to cross on a calm day. This boat is 8 ' wide and 26 ' long and is protected by metal with steel "teeth" at its bow.

Erected: 1988 by Alturas Parlor 159 N.D.G.W., Modoc County Historical Society, Supervisor Melvin "Andy" Anderson July 17, 1988.

\section*{Trails West Inc. Markers}

Lassen Trail - Pit River Ford
Location: In Alturas, California in Modoc County. Marker is setback from, but along Main Street (US 395) between McDowell Avenue and Water Street.
Inscription: "We crossed the creek here running between high banks, and drove a short distance down the north west side and encamped" - Elijah Preston Howell, Sep 6, 1849.

\section*{Lassen Trail - Conical Rocks}

Location: Near California Historical Landmark No. 109 Chimney Rock, off US 395 near MOD 30.3. Inscription: "Striking the river this morning I noticed a cluster of singular shaped rocks sticking up in spires of a conical shape 20 to 30 feet high" - Andrew Lopp Murphy, Sep 26, 1849.

\section*{APPENDIX G: ROUTE INVENTORY}

\section*{Bridges and Highway Structures}

There are 32 Bridges and Structures on US 395.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{Table 28: Bridges and Highway Structures} \\
\hline \[
\] &  &  &  &  & \[
\begin{aligned}
& \frac{5}{5} \\
& \frac{1}{3}
\end{aligned}
\] &  &  &  &  &  &  \\
\hline SIE R002.19 & 13 0018R & Long Valley UC & 105 & 21.3 & 12.8 & 1 & 0 & & & 1976 & n/a \\
\hline SIE R002.23 & 13 0018L & Long Valley UC & 105 & 21.0 & 12.8 & 1 & 0 & & & 1976 & n/a \\
\hline LAS R000.10 & 07 0072L & Evans Canyon UC & 105 & 18.3 & 12.8 & 1 & 0 & & & 1976 & n/a \\
\hline LAS R000.10 & 07 0072R & Evans Canyon UC & 105 & 20.4 & 12.9 & 1 & 0 & & & 1976 & n/a \\
\hline LAS R001.09 & 07 0075L & Scott UC & 105 & 17.1 & 12.9 & 1 & 0 & & & 1976 & n/a \\
\hline LAS R001.09 & 07 0075R & Scott UC & 105 & 19.2 & 12.9 & 1 & 0 & & & 1976 & n/a \\
\hline LAS R004.60 & 07 0076L & Route 395/70 Separation & 505 & 42.7 & 12.5 & 1 & 6.32 & & & 1976 & n/a \\
\hline LAS R004.60 & 07 0076R & Route 395/70 Separation & 505 & 38.7 & 12.5 & 1 & 4.93 & & & 1976 & n/a \\
\hline LAS 015.87 & 070023 & Long Valley Creek & 101 & 23.4 & 12.9 & 1 & 0 & & & 2004 & n/a \\
\hline LAS R017.51 & 070068 & Galeppi UC & 201 & 20.7 & 12.8 & 3 & 0 & & & 1969 & n/a \\
\hline LAS R021.34 & 070052 & Long Valley Creek Overflow & 201 & 34.7 & 12.8 & 4 & 0 & & & 1969 & n/a \\
\hline LAS R022.97 & 070025 & Doyle Overhead & 204 & 54.9 & 12.8 & 3 & 7.14 & & & 1969 & n/a \\
\hline LAS R024.69 & 070053 & Willow Ranch Creek & 201 & 19.5 & 12.8 & 3 & 0 & & & 1969 & n/a \\
\hline LAS 026.19 & 070057 & Long Valley Creek & 119 & 12.2 & 13.1 & 3 & 0 & & & 1946 & n/a \\
\hline LAS 028.00 & 070056 & Long Valley Creek & 119 & 12.2 & 0.0 & 3 & 0 & & & 1946 & n/a \\
\hline LAS 062.19 & 070030 & Standish Irrigation Canal & 119 & 8.5 & 15.0 & 2 & 0 & & & 1936 & 1990 \\
\hline LAS R071.17 & 070080 & Dill Slough & 201 & 91.4 & 13.3 & 10 & 0 & & & 1992 & n/a \\
\hline LAS R071.92 & 070081 & Susan River Overflow & 201 & 91.4 & 13.3 & 10 & 0 & & & 1992 & n/a \\
\hline LAS 072.29 & 070034 & Susan River & 204 & 36.6 & 9.9 & 6 & 0 & & & 1954 & 1982 \\
\hline LAS R114.25 & 070074 & South Termo Ditch & 119 & 7.9 & 0.0 & 3 & 0 & & & 1971 & n/a \\
\hline MOD R001.93 & 030058 & Flournoy Equipment UC & 319 & 4.6 & 0.0 & 1 & 0 & & & 1965 & n/a \\
\hline MOD 003.73 & 030019 & South Fork Pit River & 201 & 28.0 & 9.9 & 4 & 0 & & & 1947 & n/a \\
\hline MOD R015.06 & 030055 & Juniper OH & 205 & 47.9 & 12.8 & 3 & 7.14 & & & 1971 & n/a \\
\hline MOD R016.52 & 030052 & South Fork Pit River & 201 & 51.8 & 12.8 & 6 & 0 & & & 1971 & n/a \\
\hline MOD R019.64 & 030053 & South Fork Pit River & 201 & 49.4 & 12.8 & 5 & 0 & & & 1971 & n/a \\
\hline MOD R020.77 & 030054 & Alturas OH & 205 & 50.3 & 12.8 & 3 & 7.04 & & & 1971 & n/a \\
\hline MOD _021.88 & 030023 & North Fork Pit River & 501 & 18.9 & 23.2 & 1 & 0 & 1.5 & 1.5 & 1971 & n/a \\
\hline MOD _026.23 & 030009 & North Fork Pit River & 201 & 41.8 & 13.5 & 5 & 0 & 0.2 & 0.2 & 1982 & n/a \\
\hline MOD _026.71 & 030010 & Parker Creek & 201 & 10.7 & 13.7 & 3 & 0 & & & 1954 & n/a \\
\hline MOD _032.62 & 030013 & Toms Creek & 101 & 4.3 & 0.0 & 1 & 0 & & & 1951 & n/a \\
\hline MOD _034.08 & 030014 & Joseph Creek & 101 & 5.9 & 13.8 & 1 & 99.99 & & & 1951 & 1954 \\
\hline MOD _054.46 & 030016 & Willow Creek & 811 & 5.2 & 15.1 & 1 & 0 & & & 1949 & n/a \\
\hline
\end{tabular}

\section*{Traffic Control}

Table 29 identifies locations on US 395 that have traffic signals or other traffic control devices.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ Table 29: Traffic Control } \\
\hline Post Mile & Location & Description of Device \\
\hline LAS 61.58 & Junction 36/395 & Traffic signal \\
\hline MOD 22.070 & First Street & Flashing dual yellow signal for US 395 in both directions \\
\hline MOD 22.480 & Between Fifth and Eighth Streets & At-grade railroad crossing \\
\hline MOD 22.764 & Junction SR 299 south & Four-way stop with overhead flashing red lights \\
\hline
\end{tabular}

\section*{Agricultural Inspection Stations}


An agricultural inspection station conducts agricultural inspections on all private and commercial vehicles near major borders. The California Department of Food and Agriculture operates the stations. Legal authority for inspection stations is found in the California Food and Agricultural Code, Sections 5341-5353 and 6301-6465.

Figure 29. Long Valley Station (LAS R1.5)
Table 30: Agricultural Inspection Stations
\begin{tabular}{|l|c|c|l|}
\hline \multicolumn{1}{|c|}{ County } & Route & Post Mile & \multicolumn{1}{c|}{ Name } \\
\hline Lassen & US 395 & R1.5 & Long Valley Station \\
\hline Modoc & US 395 & 27.0 & Alturas Inspection Station \\
\hline
\end{tabular}

\section*{Chain Control Locations}

Snow Chain Signs are traffic signs mounted on a fixed or portable support, conveying a message or symbol to regulate, warn, or guide traffic concerning snow conditions. The Department of Transportation reserves the right to prohibit any vehicle from entering a chain control area when it is determined the vehicle will experience difficulty in safely traveling the area. See Table 31 for chain control locations.

Specific details about chain requirements can be found on the Caltrans website:
http://www.dot.ca.gov/cttravel/chain-controls.html. To help keep you informed of changing conditions, Caltrans operates the Caltrans Highway Information Network (CHIN). Phone 1-800-427-ROAD (7623)

Table 31: Chain Control Locations
\begin{tabular}{|c|c|c|l|}
\hline County \& Route & Chain Sign \# & P.M. & \multicolumn{1}{|c|}{ Location } \\
\hline SIE-395 & \(1-\mathrm{N}\) & R0.4 & Nevada Border \\
\hline LAS-395 & \(2-\mathrm{S}\) & R4.4 & .2 miles south of Hallelujah Junction \\
\hline LAS-395 & \(3-\mathrm{N}\) & R4.8 & .2 miles north of Hallelujah Junction \\
\hline LAS-395 & \(4-\mathrm{S}\) & 14.0 & .3 miles south of Red Rock Road \\
\hline LAS-395 & \(5-\mathrm{N}\) & 14.3 & Red Rock Road \\
\hline LAS-395 & \(6-\mathrm{S}\) & R24.8 & .6 miles north of Doyle \\
\hline LAS-395 & \(7-\mathrm{S}\) & 50.6 & 1.1 miles north of Honey Lake Rest Area \\
\hline LAS-395 & \(8-\mathrm{S}\) & R61.1 & Junction SR 36 \\
\hline LAS-395 & \(9-\mathrm{N}\) & 92.2 & .5 miles south of Karlo Road \\
\hline LAS-395 & \(10-\mathrm{N}\) & 129.3 & .2 miles south of Madeline \\
\hline LAS-395 & \(11-\mathrm{S}\) & 138.3 & 1.7 miles south of Modoc county line \\
\hline
\end{tabular}

\section*{Maintenance Facilities}

\section*{Maintenance Stations}

The State Highway System represents a substantial taxpayer investment. State Statute mandates for the Department of Transportation to maintain the state highways, thus preservation of the existing system is a top priority for Caltrans. Maintenance Stations are facilities used by Caltrans to maintain the highway year-round. Field crews are responsible for daily maintenance of their assigned highway segments. Annual activities include snow removal, pothole patching, culvert cleaning, litter removal, paving, shoulder and weed maintenance. Caltrans maintenance staff also responds to highway incidents including traffic accidents, landslides, falling rocks, and hazardous material spills. The maintenance stations listed in Table 32, lists those stations that are responsible for US 395.


Figure 30. Susanville Maintenance Station (LAS R60.3)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Table 32: Maintenance Stations} \\
\hline  & 皆 & त & \# & \(\sum\) &  \\
\hline 671 & Beckwourth & Plumas & SR 70 & 81.3 & Highway Maintenance Station \\
\hline 662 & Susanville East & Lassen & Just off US 395 & R60.3 & Area Superintendent, Highway Maintenance Station \\
\hline 667 & Alturas & Modoc & US 395 & 23.0 & Highway Maintenance Station \\
\hline
\end{tabular}


Figure 31. Termo Sandhouse (Near LAS 115.4)

\section*{Sand and Salt Storage}

Sand houses are storage facilities for abrasives and deicers. Sand houses are located in areas where temperatures are consistently low in the winter. See Table 33: Sand and Salt Storage.

Table 33: Sand and Salt Storage
\begin{tabular}{|c|c|}
\hline Route & Post Mile \\
\hline SR 70 & LAS 3.6 \\
\hline US 395 & LAS 115.2 \\
\hline SR 299 & MOD 50.2 \\
\hline
\end{tabular}

\section*{Intelligent Transportation Systems (ITS)}

Intelligent Transportation Systems (ITS) consists of a broad range of wireless and wire line communications-based information and electronics technologies used to address existing transportation problems. These technologies can be used to provide early warning and real-time information, and often offer the potential to improve safety and efficiency relatively quickly and at a reasonable cost. In addition, ITS elements are used to provide advanced warning about adverse road conditions or incidents, giving travelers the option to adjust their travel plans. Road and traffic information may be obtained via Caltrans' highway conditions website http://www.dot. ca.gov/cgi-bin/roads.cgi Caltrans maps and traffic cameras may be accessed here: http://www. dot.ca.gov/dist2/maps.htm

Some of the ITS technologies include: Closed Circuit Televisions (CCTV), Changeable Message Signs (CMS), Highway Advisory Radios (HAR), and Roadway Weather Information Systems (RWIS). CCTV and RWIS are used as surveillance and traveler information devices, for monitoring
road and weather conditions. Weather conditions can be found at the following websites: http:// www.dot.ca.gov/cgi-bin/roads.cgi and http://www.weathershare.org/

Informing the driver ahead of time enables them to make travel decisions necessary to have a safe and efficient trip. Information obtained via the internet may be used for pre-trip planning to change travel plans or routes. ITS elements are often strategically located along the state highways before major traveler "decision points," to transmit roadway conditions ahead, and can be especially useful for areas that are remote or at higher elevations. These devices provide additional details such as information about road closures, or delays due to adverse weather conditions. See Table 34 for a list of Existing ITS Elements and Table 35 for a list of Possible Future ITS Elements.

Table 34: Existing Intelligent Transportation Systems (ITS)
\begin{tabular}{|l|l|l|l|l|l|}
\hline County & Route & Post Mile & Type & Location & Status \\
\hline Lassen & US 395 & R1.6 & HAR & Long Valley Inspection Station & Existing (Upgrade) \\
\hline Lassen & US 395 & R1.7 & CMS & Long Valley Inspection Station & Existing \\
\hline Lassen & US 395 & R1.7 & HAR & North of Long Valley Inspection Station & Existing \\
\hline Lassen & US 395 & R21.9 & RWIS & Doyle (Hall Road) & Existing \\
\hline Lassen & US 395 & R21.9 & CCTV & Doyle (Hall Road) & Existing \\
\hline Lassen & US 395 & 51.7 & HAR FLASHER & Buntingville Road & Existing \\
\hline Lassen & US 395 & 53.1 & RWIS & Janesville (Sears Road) & Existing \\
\hline Lassen & US 395 & 53.1 & CCTV & Janesville (Sears Road) & Existing \\
\hline Lassen & US 395 & R60.0 & HAR FLASHER & Diane Drive & Existing (Upgrade) \\
\hline Lassen & US 395 & R60.1 & HAR & Susanville & Existing \\
\hline Lassen & US 395 & R60.9 & CMS & US395/SR36 S/B Wind Warning & Existing \\
\hline Lassen & US 395 & R61.1 & CCTV & SR36-US395 (Susanville) & Existing \\
\hline Modoc & US 395 & R20.9 & HAR FLASHER & Glenn Street (south of Alturas) & Existing \\
\hline Modoc & US 395 & 23.1 & HAR & Alturas (at maintenance station) & Existing \\
\hline Modoc & US 395 & 23.7 & HAR FLASHER & Pencil Road (north of Alturas) & Existing \\
\hline Source: California Department of Transportation, District 2 Division of Traffic Management (Month Year) \\
\hline \begin{tabular}{l} 
CCTV = Closed Circuit Television \\
CMS = Changeable Message Sign \\
HAR = Highway Advisory Radio
\end{tabular} & \begin{tabular}{l} 
HAR FLASHER = Highway Advisory Radio Sign \\
RWIS = Roadside Weather Information System \\
\hline
\end{tabular}
\end{tabular}

Table 35: Possible Future Intelligent Transportation Systems (ITS)
\begin{tabular}{|l|l|l|l|l|l|}
\hline County & Route & Post Mile & Type & Location & Status \\
\hline Washoe (Nevada) & US 395 & & CMS & 9 miles from California/ Nevada state line & Possible \\
\hline Lassen & US 395 & R4.61 & CCTV & Hallelujah Junction & Possible \\
\hline Lassen & US 395 & R60.9 & RWIS & US 395/SR 36 & Possible \\
\hline Lassen & US 395 & 115.2 & RWIS & Termo & Possible \\
\hline Lassen & US 395 & 133.3 & CCTV & Sage Hen Summit & Possible \\
\hline Lassen & US 395 & 133.3 & RWIS & Sage Hen & Possible \\
\hline Modoc & US 395 & R20.9 & CMS & South of Alturas & Possible \\
\hline Modoc & US 395 & 22.8 & CCTV & SR299/US395 (Alturas) & Possible \\
\hline Modoc & US 395 & 27.1 & CMS & North of Alturas & Possible \\
\hline Soure &
\end{tabular}

Source: California Department of Transportation, District 2 Division of Traffic Management (Month Year)
CCTV = Closed Circuit Television
CMS = Changeable Message Sign
HAR = Highway Advisory Radio


Figure 32. Janesville Park and Ride (LAS 52.6)

\section*{Vista Points}

Vista Points are paved areas beyond the shoulder, which permit travelers to safely exit the highway to stop and view a scenic area. In addition to parking areas, trash receptacles, interpretive displays, and in some cases rest rooms, drinking water, and telephones may be provided. See Table 36.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{3}{|c|}{ Table 36: Vista Points } \\
\hline County & Route & \multicolumn{1}{c|}{ Post Mile } & \multicolumn{1}{c|}{ Location } \\
\hline Modoc & US 395 & R20.4 & Modoc National Wildlife Refuge \\
\hline Modoc & US 395 & MOD 51.9 & Goose Lake Vista Point \\
\hline
\end{tabular}

\section*{Park and Ride Lots}

Park \& Ride lots are locations where patrons drive private automobiles or ride bicycles to a transit station or carpool/vanpool waiting area, and park the vehicle. They then ride the transit system, take a carpool, or vanpool to their destinations. Agencies other than Caltrans may operate Park \& Ride lots. Official park and ride lots on US 395 are listed in Table 37.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{c|}{ Table 37: Park and Ride Lots } \\
\hline County & Route & \multicolumn{1}{c|}{ Post Mile } & \multicolumn{1}{c|}{ Name } \\
\hline Lassen & US 395 & 52.6 & Janesville \\
\hline
\end{tabular}

\section*{Passing Lanes and Truck Climbing Lanes}

Passing lanes are portions of the roadway provided for weaving, passing, speed change, or for other purposes supplementary to through traffic movement.

Truck climbing lanes are additional lanes added to improve traffic movement around slow moving vehicles on a grade. See Table 38.

Table 38: Passing and Truck Climbing Lanes on US 395
\begin{tabular}{|c|c|c|c|c|}
\hline Begin & End & Location Description & Type & Direction \\
\hline LAS 9.0 & LAS 10.0 & From 4.5 miles north to 5.6 miles north of the SR 70 junction & P & Northbound \\
\hline LAS 11.7 & LAS R10.3 & From 2.6 miles south of Red Rock Road to 5.8 miles north of the SR 70 junction & P & Southbound \\
\hline LAS 26.6 & LAS 27.6 & From Laver Crossing to .4 miles south of Long Valley Creek & P & Northbound \\
\hline LAS 29.8 & LAS 28.8 & From Garnier Road to . 8 miles north of Long Valley Creek & P & Southbound \\
\hline LAS 35.1 & LAS 36.3 & From 6 miles north of A25 to 1.8 miles north of A25 & P & Northbound \\
\hline LAS 41.4 & LAS 40.5 & From .7 miles south of Milford Grade to 1.5 miles south of Milford Grade & P & Southbound \\
\hline LAS 46.0 & LAS 46.7 & From four miles north of Milford to three miles south of the Honey Lake Rest Area & P & Northbound \\
\hline LAS 49.8 & LAS 48.9 & From . 2 miles north of the Honey Lake Rest Area to .7 miles south of the Honey Lake Rest Area & P & Southbound \\
\hline LAS 54.3 & LAS 55.4 & From . 2 miles north of Church Street to .2 miles north of Janesville Road & P & Northbound \\
\hline LAS 57.2 & LAS 57.7 & From . 4 miles south of Bass Hill Road to Bass Hill Road & P & Northbound \\
\hline LAS 58.0 & LAS 57.4 & From .5 miles north of Bass Hill Road to .1 mile south of Bass Hill Road & P & Southbound \\
\hline MOD 4.6 & MOD 4.8 & From . 4 miles north of CR 189 to . 6 miles north of CR 189 & T & Northbound \\
\hline MOD 4.8 & MOD 4.6 & From .6 miles north of CR 189 to .4 miles north of CR 189 & T & Southbound \\
\hline
\end{tabular}

\footnotetext{
\(\mathrm{P}=\) Passing lanes
\(\mathrm{T}=\) Truck climbing lanes
Turnout locations are included in the appropriate fact sheets.
}

Roadside Rest Areas


Figure 33. Secret Valley Rest Area (LAS 96.9)
Safety Roadside Rest Areas (SRRA) area roadside areas provided for motorists to stop and rest for short periods. State facilities usually include paved parking areas, drinking water, toilets, tables, benches, telephones, and information panels. Other agencies may also operate roadside rest areas with different ranges of amenities.

Table 39: Roadside Rest Areas
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ County } & \multicolumn{1}{|c|}{ Route } & \multicolumn{1}{c|}{ PM } & \multicolumn{1}{|c|}{ Name } & Which side of highway? \\
\hline Lassen & US 395 & 49.7 & Honey Lake Safety Roadside Rest Area & Northbound \\
\hline Lassen & US 395 & 96.9 & Secret Valley Safety Roadside Rest Area & Southbound \\
\hline
\end{tabular}

\section*{Weigh Stations}

California's "Commercial Vehicle Enforcement Facilities" are commonly called weigh stations or truck scales. These facilities are operated by the California Highway Patrol (CHP). Table 40 lists weigh stations located on US 395.

Table 40: Weigh Stations
\begin{tabular}{|l|l|l|l|l|l|}
\hline Route & \multicolumn{1}{|c|}{\begin{tabular}{c} 
County \& \\
Post Mile
\end{tabular}} & \multicolumn{1}{|c|}{ Location } & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Fame \\
Type
\end{tabular}} & \multicolumn{1}{|c|}{ Status } \\
\hline US 395 & LAS 49.9 & \begin{tabular}{l}
15 miles south of \\
Susanville
\end{tabular} & \begin{tabular}{l} 
Honey Lake Commercial Vehicle \\
Enforcement Facility
\end{tabular} & Mini-site & Active \\
\hline US 395 & LAS 60.7 & South of Susanville & \begin{tabular}{l} 
Johnstonville Commercial Vehicle \\
Enforcement Facility
\end{tabular} & Mini-site & Active \\
\hline US 395 & LAS 114.8 & Termo & \begin{tabular}{l} 
Termo Commercial Vehicle \\
Enforcement Facility
\end{tabular} & Mini-site & Active \\
\hline US 395 & MOD 54.0 & \begin{tabular}{l} 
Six miles south of the \\
Oregon border
\end{tabular} & \begin{tabular}{l} 
Davis Creek Commercial Vehicle \\
Enforcement Facility
\end{tabular} & Mini-site & Inactive \\
\hline
\end{tabular}

California Vehicle Code Section 2813 outlines who must stop at weigh stations and inspection stations:
2813. Every driver of a commercial vehicle shall stop and submit the vehicle to an inspection of the size, weight, equipment, and smoke emissions of the vehicle at any location where members of the California Highway Patrol are conducting tests and inspections of commercial vehicles and when signs are displayed requiring the stop. Every driver who fails or refuses to stop and submit the vehicle to an inspection when signs are displayed requiring that stop is guilty of a misdemeanor.


Figure 35. Weigh Station Mini-Site (LAS 49.9)


Figure 34. Susanville Airport (LAS R60.3)

Municipal airports typically serve as transfer points for commercial delivery services, such as: United Parcel Service (UPS) and Federal Express (FedEx), as bases for fighting wild land fires, and used for general business and recreational flying.

General Aviation Airports often include both commercial and non-commercial aviation activities, including air ambulance, air charter flights, aircraft rental, sale of aviation petroleum products and aircraft parts, aircraft repair and maintenance.

Table 41 lists airports along or in close proximity to US 395.
\begin{tabular}{|l|l|l|c|}
\hline \multicolumn{2}{|c|}{ Table 41: Airports near US 395 } & \multicolumn{1}{c|}{ Owner } & Type \\
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Location } & County of Lassen & Limited Use \\
\hline Herlong & \begin{tabular}{l} 
Five miles north of route in Herlong, \\
Lassen County
\end{tabular} & \begin{tabular}{l} 
Fifteen miles east of route in the Sierra \\
Army Depot, Lassen County
\end{tabular} & \begin{tabular}{l} 
U.S. Army Aeronautical \\
Services Agency
\end{tabular} \\
\hline Amedee AAF & Along route near LAS 60.3 & City of Susanville & Regional \\
\hline \begin{tabular}{l} 
Susanville Municipal \\
Airport, (SVE)
\end{tabular} & Along route in Ravendale, LAS 108.5 & County of Lassen & Limited Use \\
\hline Ravendale & Ten miles southwest of Alturas & \begin{tabular}{l} 
California Pines Community \\
Services District
\end{tabular} & Limited Use \\
\hline California Pines & Just west of Alturas & City of Alturas & Community \\
\hline \begin{tabular}{l} 
Alturas Municipal Airport, \\
(AAT)
\end{tabular} & & \\
\hline
\end{tabular}

\section*{APPENDIX H: TRUCK INFORMATION}

\title{
TRUCK MAP LEGEND TRUCK LENGTHS \& ROUTES
}

STATE OF CALIFORNIA
DEPARTMENT OF TRANSPORTATION

Click here for the Truck Network Map

\begin{abstract}
 (green and blue routes), CA Legal routes (black routes), and Advisory routes (yellow routes). CA Legal trucks have access to the entire State highway system except where prohibited (some red routes).
\end{abstract}
 STAA ROUTES The STAA Network allows the "interstate" STAA trucks which are the green trucks shown
below. The STAA Network consists of the National Network (green routes, primarily interstates) and Terminal
Access routes (blue, primarily State routes). ("STAA" = federal Surface Transportation Assistance Act of 1982.) STAA ROUTES The STAA Network allows the "interstate" STAA trucks which are the green trucks shown
below. The STAA Network consists of the National Network (green routes, primarily interstates) and Terminal
Access routes (blue, primarily State routes). ("STAA" = federal Surface Transportation Assistance Act of 1982.) STAA ROUTES The STAA Network allows the "interstate" STAA trucks which are the green trucks shown
below. The STAA Network consists of the National Network (green routes, primarily interstates) and Terminal
Access routes (blue, primarily State routes). ("STAA" = federal Surface Transportation Assistance Act of 1982.)
(Click here for the Truck Network Map.)
Interstate "STAA" Truck Tractor - Semitrailer

\begin{tabular}{ll}
\hline Semitrailer length & \(: 48\) feet maximum \\
KPRA* & \(:\) no limit \\
Overall length & \(:\) no limit \(\quad{ }^{*}\) (KPRA = kingpin-to-rear-axle) \\
& \\
Semitrailer length & \(:\) over 48 feet up to 53 feet maximum \\
KPRA & \(: 40\) feet maximum for two or more axles, \\
& 38 feet maximum for single-axle trailers \\
Overall length & \(:\) no limit
\end{tabular}

Interstate "STAA" Truck Tractor - Semitrailer - Trailer (Doubles)
Trailer length : 28 feet 6 inches maximum (each trailer) Overall length : no limit


Terminal Access - Interstate "STAA" trucks may travel on State highways that exhibit this sign.

Service Access - Interstate "STAA" trucks may travel up to one road mile from the off ramp to obtain services (food, fuel, lodging, repairs), provided the route displays this sign.


\section*{APPENDIX I: CAPACITY ANALYSIS AND LEVEL OF SERVICE}

Methodology:
The standard reference in highway capacity analysis is the Highway Capacity Manual prepared by the Transportation Research Board (National Research Council, Washington, D.C.). The Highway Capacity Manual is a collection of the state-of-the-art techniques for estimating the capacity and determining the level of service for transportation facilities. It represents a systematic and consistent basis for evaluating transportation facilities with procedures that are applicable nation-wide.

Capacity Analysis:
The set of procedures and methodologies used for estimating the traffic-carrying ability of various transportation facilities is broadly referred to as capacity analysis. A principal objective of capacity analysis is to estimate the number of vehicles that a facility can accommodate during a specified period of time. Capacity analysis is also used to estimate the maximum amount of traffic that a facility can accommodate while maintaining a prescribed level of operation. Common outputs of capacity analysis are estimates of the quality of operation (level of service) for a given facility.

Capacity:
The capacity of a facility is the maximum hourly rate at which persons or vehicles reasonably can be expected to traverse a point or uniform section of lane or roadway during a given time period under prevailing roadway, traffic and control conditions. It represents the flow rate that can be achieved during peak periods of demand. Capacity is affected by a number of factors such as lane and shoulder widths, density of access points, interchange spacing, grade, and types of vehicles in the traffic stream. Capacity values are determined differently by mode (auto, bus, pedestrian, bicycle) and by facility (freeway, highway, urban street, intersection, etc.).

\section*{Level of Service:}

Level of Service (LOS) is a qualitative measure describing operational conditions within a traffic stream, generally in terms of such service measures as speed and travel time, freedom to maneuver, traffic interruptions, and comfort and convenience. Six LOS are defined for each type of facility analyzed. Letters designate each level, from "A" to "F", with LOS " \(A\) " representing the best operating conditions and LOS " \(F\) " the worst.

Methodologies:
The HCM contains analytical methodologies for the following situations: urban streets, signalized intersections, unsignalized intersections, pedestrians, bicycles, two-lane highways, multilane highways, freeway facilities, basic freeway segments, freeway weaving, ramps, interchanges and transit. Capacity and level of service is determined differently for each facility type, so direct comparisons across facility types should not be made.

Two-Lane Highway Methodology - Chapter 15, HCM 2010:
A two-lane highway is an undivided roadway with two lanes, one for use by traffic in each direction. On a two-lane undivided highway, traffic flow is affected by a number of factors, including geometric conditions (curvature, lane widths, shoulder widths, etc.), sight distance and grade. Traffic flow in one direction is also influenced by traffic flow in the other direction. Travel speeds fall and time spent following other vehicles rises as volumes increase and traffic in the opposing direction reduces opportunities to pass.

The performance measures used to determine level of service for two-lane highways are percent time spent following, average travel speed and percent of free-flow speed. Percent time spent following is the average percentage of travel time that vehicles must travel in platoons behind slower vehicles due to the inability to pass. Average travel speed is the average of the travel time of all vehicles over a designated interval. Percent of free-flow speed is the ratio of average travel speed to free flow speed (approximately equal to posted speed) over a designated interval.

For purposes of analysis, two-lane highways are divided into three classes based on the primary type of use and driver expectations:

Class I -
These are two-lane highways on which motorists expect to travel at relatively high speeds. Two-lane highways that are major inter-city routes, primary arterials connecting major traffic generators, or primary links in state or national highway networks generally are assigned to Class I.

Class II -
These are two-lane highways on which maintaining high travel speeds are not necessarily the most important objective of motorists. Two-lane highways that serve as scenic or recreational routes, are not primary arterials, or pass through rugged terrain generally are assigned to Class II.

Class III -
Class III is applicable in situations where a two-lane highway passes through a small town, recreational area or other location with posted speed limits less than 55 mph . In these situations motorists primarily want to proceed at a reasonable speed and generally do not expect to have an opportunity to pass.

The level of service (LOS) for Class I highways is defined in terms of both percent time spent following and average travel speed. For Class II facilities, the LOS is defined only in terms of percent time spent following. The LOS on Class III segments is defined in terms of percent of free-flow speed. The tables below provide the criteria (break-points) for level of service for each facility type.

Table 42: Level of Service Criteria for Two-Lane Highways in Class I
\begin{tabular}{|c|c|c|}
\hline LOS & Percent Time Spent Following & Average Travel Speed (mi/h) \\
\hline A & \(<35\) & \(>55\) \\
\hline B & \(>35-50\) & \(>50-55\) \\
\hline C & \(>50-65\) & \(>45-50\) \\
\hline D & \(>65-80\) & \(>40-45\) \\
\hline E & \(>80\) & \(<40\) \\
\hline F & Vehicle flow rate exceeds capacity & \\
\hline
\end{tabular}

Table 43: Level of Service Criteria for Two-Lane Highways in Class II
\begin{tabular}{|c|c|}
\hline LOS & Percent Time Spent Following \\
\hline A & \(<40\) \\
\hline B & \(>40-55\) \\
\hline C & \(>55-70\) \\
\hline D & \(>70-85\) \\
\hline E & \(>85\) \\
\hline F & Vehicle flow rate exceeds capacity \\
\hline
\end{tabular}

Table 44: Level of Service Criteria for Two-Lane Highways in Class III
\begin{tabular}{|c|c|}
\hline LOS & Percent of Free-Flow Speed \\
\hline A & \(>.92\) \\
\hline B & \(>.83-.92\) \\
\hline C & \(>.75-.83\) \\
\hline D & \(>.67-.75\) \\
\hline E & \(<.67\) \\
\hline F & Vehicle flow rate exceeds capacity \\
\hline
\end{tabular}

Source: Highway Capacity Manual 2010.

\section*{APPENDIX J: TRAFFIC FORECAST}

\section*{Basis of forecast}

Twenty-two factors were examined to determine their future impact on the route. Some of these included were historic traffic volumes; historic and potential development; historic and future national, state, and regional trends; emerging transportation technologies; and induced demand.

Two properties of each factor was considered: the probability of the factor occurring and what impact the factor would have should it occur. An example of a factor that could increase volumes significantly, but has an unknown chance of occurring, is expansion of operations at the Sierra Army Depot. Other factors with unknown chances of occurring include redevelopment of Herlong, emerging technologies such as autonomous vehicles, migration to Nevada to avoid road charging while continuing to work in California, and whether I-11 will be constructed on the US 395 alignment. Factors such as these were assigned a low weight in determining growth rate, even though, should they occur, there could be an increase in volumes much higher than the forecast in this TCR.

Below is a list of some other factors that were considered in developing the forecast.

\section*{Historic Traffic Growth Rates}

AADT records extend back to 1968. The increase in AADT along some sections was as high as 135 vehicles per year for the period from 1968 to 2010. During the period from 1990 to 2010, AADT increased by about half the rate. During the last ten years, volumes along some segments decreased, suggesting that using historic volume changes alone could not be the only criteria used in forecasting volumes for US 395.

Historic volumes were, however, still considered in developing this forecast. The evaluation of historic AADT involved exploring which events had an impact on traffic volumes and measuring how volumes increased or decreased. The analysis also involved considering the likelihood of those events occurring in the future.

\section*{Lumber Mill Closures}

In the 1990s and 2000s, there was a decrease in growth rate along US 395. During those two decades, lumber mills in nearby communities, such as Alturas and Susanville, closed. Future volumes are unlikely to be affected by mill closures because there are no mills remaining in the vicinity of US 395.

\section*{Changes in Land Use}

Historic and potential future development and changes in land use were also considered. One example of development that had an impact on volumes is the construction and expansion of three prisons (California Correctional Center, High Desert State Prison and Federal Correctional Institution (FCI), Herlong) near US 395 from the 1960s-2000s. The prisons, which are among the top employers in Lassen County, also generate many trips along US 395. A review of county and city general plans and regional transportation plans helped to inform the US 395 volume forecast.

\section*{National, State, and Regional Trends}

National, state, and regional trends were also considered in developing this forecast. Some of the trends considered include population, vehicle ownership, rural/urban in- and out- migration and changes in type of employment. Emerging and future technologies were also considered.

\section*{Cold Springs, Nevada}

There are multiple variables whose impacts are difficult to foresee. For example, changes in land use and cross-state-border development. The analysis strongly suggests that new development from 2000-2010 in Cold Springs, Nevada; just east of the California state line; contributed to increases in AADT along US 395. During the decade from 2000 to 2009, 1,757 new homes were constructed in Cold Springs, which is over half of the total housing units in the community. Although the population of Cold Springs is projected to increase, the rate of growth is expected to slow due to resource and land constraints.

\section*{Induced Travel}

For many years, the future concept for US 395 was to expand the section from SR 70 to SR 36 to a four-lane expressway. Evidence suggests that adding capacity to highways can lead to increased VMT through induced travel, even along rural highways. However, the impacts of capacity expansion might not be detectable within the first 20 years. Therefore, this factor did not influence the forecast as much as some of the other factors, since the TCR horizon is 20 years into the future.

\section*{Growth Rate: Conclusion}

\section*{South of Susanville}

Most of the factors with an unknown potential for occurring are along the section of US 395 south of Susanville. Many of those factors could have a substantial impact on traffic volumes, should they occur. Since the methodology applied little weight to the unknown factors, the forecast included in the Route Performance Table is lower than that which could materialize.

\section*{North of Susanville}

Although there are several factors with an unknown chance of occurring, if they did occur, they would probably have only a small impact on volumes. For example, gas price is difficult to forecast. But extreme changes to the price of gas would probably not have a significant impact on volumes in the short term because many of the trips are made by automobile-dependent residents, who are already making trips sparingly.

\section*{APPENDIX K: ALTERNATIVES CONSIDERED}
\begin{tabular}{|c|c|c|c|}
\hline Alternative A No Action & \begin{tabular}{l}
Alternative B \\
Two-Lane Concept with Passing Lanes Package
\end{tabular} & Alternative C Contiguous Four Lanes & \begin{tabular}{l}
Alternative D (Recommended) \\
Four-Lane Divided Expressway
\end{tabular} \\
\hline \begin{tabular}{l}
Advantages \\
- No need to change how business is currently conducted on US 395 \\
- Probably the lowest initial cost
\end{tabular} & \begin{tabular}{l}
Advantages \\
- Lower cost than Alternatives C and D \\
- Less environmental impact than Alternatives C and D \\
- Improvement to operations compared to Alternative A \\
- Within existing right-of-way
\end{tabular} & \begin{tabular}{l}
Advantages \\
- Lower cost than Alternative D \\
- Less environmental impact than Alternative D \\
- Improvement to operations compared to Alternatives A and B \\
- Mostly within existing right-of-way \\
- It meets public and LCTC expectation of four lanes
\end{tabular} & \begin{tabular}{l}
Advantages \\
- Best addresses need for increased safety \\
- Best operational outcome \\
- It meets public and LCTC expectations of four lanes \\
- Substantially lower traffic control costs \({ }^{1}\)
\end{tabular} \\
\hline \begin{tabular}{l}
Disadvantages \\
- This approach has led to disappointment from LCTC and public \\
- Makes little progress toward future goal \\
- Likely to result in lowest performing future outcome
\end{tabular} & \begin{tabular}{l}
Disadvantages \\
- Difficulty obtaining capacity funding \\
- Weak argument to satisfy safety needs \\
- It would be against public and LCTC expectations \\
- Requires multiple and complex implementation actions \\
Components such as median barriers and turn prohibitions could limit access to properties and communities. \\
Remaining two-lane sections will still have operational issues \\
- 20-40\% higher traffic-control associated costs than Alternative \(\mathrm{D}^{1}\)
\end{tabular} & \begin{tabular}{l}
Disadvantages \\
- Difficulty obtaining capacity funding \\
- Weak argument to satisfy safety needs \\
- Need to increase field maintenance forces \\
- Wildlife over- and under- crossings would be needed \\
- \(20-40 \%\) higher traffic-control associated costs than Alternative \(\mathrm{D}^{1}\)
\end{tabular} & \begin{tabular}{l}
Disadvantages \\
- Highest cost \\
- Will be challenging to secure level of funding needed \\
- Longest time-frame to implement \\
- More right-of-way needed \\
- Wildlife over- and under- crossings would be needed \\
- Requires innovative implementation strategies \\
- Need to increase field maintenance forces
\end{tabular} \\
\hline
\end{tabular}
\({ }^{1}\) Cost savings result from reducing or eliminating the need for lane closures and the physical separation between construction activities and live traffic. The contractor has greater flexibility to perform activities (especially earthwork and structure construction), fewer staging restrictions, fewer traffic control items (such as K-rail and flaggers), and fewer work window restrictions (such as limiting work to nights-only). Total time related overhead costs are also lower when fewer work restrictions allow a project to be completed in fewer construction seasons.

\section*{APPENDIX L: ACCESS MANAGEMENT}

Access management relates to coordinated efforts by the state and local agencies to manage exit from- and entrance to- highways to provide optimum safety, cost effectiveness, efficiency, comfort, and convenience for the traveling public. It involves strategic placement of new access, or managing existing access to improve traffic operations. Points of entry and exit are necessary for business and residential access, but also result in cross traffic and potential conflict between vehicles, bicyclists and pedestrians. A comprehensive access management program normally involves legislative, technical and enforcement components.

Access management should not be confused with access control nor should access management be confused with access openings, which are simply public or private rights to access through the access control line as long as State requirements are met. Both access control and access openings can be incorporated into an access management program.

Well-managed and designed access can encourage business investment, improve aesthetics and reduce adverse social, economic and environmental impacts. The benefits of access management may include:
- Improving safety
- Lowering collisions involving pedestrians and cyclists
- Reducing traffic congestion
- Maintaining efficiency of mainline operations
- Enhancing the environment by reducing fuel consumption and emissions
- Improving the appearance and quality of the built environment for communities

Methods to manage access may include:
- Eliminating access points near major intersections
- Spacing signals uniformly
- Consolidating access points to reduce frequency and increase spacing (create joint or shared access)
- Applying left and right-turn channelization
- Implementing non-traversable medians or directional median openings for left turns and u-turns
- Utilizing continuous two-way left turn lanes
- Developing local streets and roads that parallel the arterial and serve abutting properties

\section*{Potential strategies:}
- Strategy 1: Work with agencies during General Plan development to establish access management policies in the circulation element
- Strategy 2: Consider access management objectives during the Local Development Review (LDR) process
- Strategy 3: Check for consistency with access management objectives during review and approval of encroachment permits
- Strategy 4: Maintain areas of existing access control
- Strategy 5: Undertake access management studies in cooperation with local and regional partners
- Strategy 6: Identify areas where focused access management strategies or acquisition of access control may have significant operational benefits

Access management has been a key priority along US 395, particularly along the section between Hallelujah Junction and the SR 36 junction, as documented in previous studies and reports for the highway. In 1984, a draft access management study was developed by Lassen County and Caltrans. The study recommended several strategies:
1. Limiting or reducing the number of access openings
2. Setting a minimum distance between openings
3. Converting private openings which serve more than two parcels to public openings
4. Establishing an equitable cost-sharing procedure for developers
5. Settling maintenance responsibility for road connections onto the highway
6. Requiring development of frontage road to prevent need for additional access openings that exceed thresholds in number 2 above
7. One foot grant: requiring adjacent property owners, at the time of a land division proposal, to deed a one-foot strip of right of way in order to deny future access to abutting lots
8. Relinquish right of ingress and egress: adjacent properties could be relinquished of the right to enter and exit directly onto or off of US 395 when a land division is proposed
9. Frontage road buffers: frontage roads could be required as a condition of approval of a land division proposal
10. County plans could identify acceptable locations for roads which would feed into intersections with the through highway

In 1985, the Lassen County Board of Supervisors passed Resolution No. 85/86-41, requesting that District 2 prepare a master controlled access highway agreement showing a plan for location and spacing of future public road connections along US 395 from Hallelujah Junction to the junction with SR 36.

In 1989, an access management status report was developed. The status report identified locations along US 395 between SR 70 and SR 36 that exceeded the optimum of two access openings per mile. The two areas having the greatest density of access openings were near Milford and Herlong Junction. Doyle was identified as an "area of concern."

In 2007, studies were conducted to determine the purpose and need for the Honey Lake Expressway Corridor Master Plan; a plan to expand US 395 between Hallelujah Junction and the SR 36 junction from a two-lane conventional highway to 4-lane divided expressway. The plan would address the need for access control, improved circulation, improved safety, identification of access points and an upgrade to a four-lane divided expressway.

\section*{APPENDIX M: US 395 FOUR-LANE DIVIDED EXPRESSWAY IMPACT CHECKLIST}

This checklist is to be used during review and development of every transportation and land use project along US 395 between SR 70 (Halleluiah Junction) and SR 36 (east of Susanville). The purpose of the checklist is to foster consideration of the relationship and impact of the proposed project to the future goal of a four-lane divided expressway. The list is intended to help avoid actions that will negatively impact achievement of that goal and encourage actions that will help attain that goal.

\section*{US 395 Four-Lane Divided Expressway Impact Checklist}

How will the proposed project positively or negatively affect progress toward attainment of a four-lane divided expressway?
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Issue: \\
Access Point Consolidation
\end{tabular} & Discussion: \\
\hline Considered: & Decision: \\
\hline \begin{tabular}{l} 
Issue: \\
Driveway Closures
\end{tabular} & Discussion: \\
\hline Considered: & Decision: \\
\hline \begin{tabular}{l} 
Issue: \\
Obtain Access Control
\end{tabular} & Discussion: \\
\hline Considered: & Decision: \\
\hline \begin{tabular}{l} 
Issue: \\
Obtain Right-of-Way
\end{tabular} & Discussion: \\
\hline Considered: & Decision: \\
\hline \begin{tabular}{l} 
Issue: \\
Frontage Road Const.
\end{tabular} & Discussion: \\
\hline Considered: & Decision: \\
\hline \begin{tabular}{l} 
Issue: \\
Utility - New/Relocation
\end{tabular} & Discussion: \\
\hline Considered: & Decision: \\
\hline \begin{tabular}{l} 
Issue: \\
Wildlife Crossings
\end{tabular} & Discussion: \\
\hline Considered: & Decision: \\
\hline \begin{tabular}{l} 
Issue: \\
Mitigation Sites
\end{tabular} & Discussion: \\
\hline Considered: & Decision: \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Issue: \\
Proximity to Communities
\end{tabular} & Discussion: \\
\hline Considered: & Decision: \\
\hline \begin{tabular}{l} 
Issue: \\
Building Setbacks
\end{tabular} & Discussion: \\
\hline Considered: & Decision: \\
\hline \begin{tabular}{l} 
Issue: \\
Access Onto Frontage Road
\end{tabular} & Discussion: \\
\hline Considered: & Decision: \\
\hline \begin{tabular}{l} 
Issue: \\
Noise Attenuation
\end{tabular} & Discussion: \\
\hline Considered: & Decision: \\
\hline Issue: & Discussion: \\
\hline Considered: & Discussion: \\
\hline Issue: & Decision: \\
\hline Considered: & Discussion: \\
\hline Issue: & Decision: \\
\hline
\end{tabular}

\section*{APPENDIX N: LOCAL PARTNER - SAFETY FOCUSED REHAB}

The Local Partner - Safety Focused Rehab is one way to achieve a 4-lane divided expressway. The concept is to leverage SHOPP funds with STIP and other funds during a rural major rehab project (3R) on the existing 2-lane roadway. The intent is to improve construction safety during a typical rural rehab by keeping the contractor away from traffic without increasing SHOPP spending, all the while progressing towards the four-lane divided expressway.

\section*{Features:}
- Build new lanes separate from the existing lanes in-lieu of repairing the existing lanes
- Close the old lanes when done
- Acquire new right of way as needed
- Innovative funding
- Determine the cost to rehabilitate existing section. Apply that amount to new lane construction.
- Use local partner, non-SHOPP funds (STIP and others) for costs above that of a regular 3R rehab
- Implement as each highway segment is scheduled for a 2R/3R rehab (typically 5 to 10 miles or so at a time)

Benefits:
- Increase construction safety for the public and the contractor
- Obtain right of way for four-lane divided expressway
- Advancing the goal of a four-lane divided expressway
- Eventually use non-SHOPP funds to upgrade the old lanes to create a 4-lane divided expressway

Based on department pavement management systems, approximately half of US 395 between SR 70 and Susanville will be eligible for rehabilitation within the next 10-15 years.

\section*{LOCAL PARTNER/SAFETY FOCUSED REHABILITATION Conceptual Sequence}

\section*{1 Existing Condition}

\section*{Existing R/W}

Existing R/W

LOCAL PARTNER/SAFETY FOCUSED REHABILITATION Conceptual Sequence
(2) Rehabilitation Phase (Interim Condition 1)

New R/W
New lanes constructed in lieu of rehabilitating old lanes


No work undertaken, lanes closed
Existing R/W

\(M \quad\) I \(\quad \mathrm{E}\) S

\section*{LOCAL PARTNER/SAFETY FOCUSED REHABILITATION} Conceptual Sequence

3 Local Partner Phase (Interim Condition 2)

New R/W
Four lane passing segment


Original highway lanes rehabilitated and re-opened
Existing R/W
\begin{tabular}{cccccc}
0 & 1 & 2 & 3 & 4 & 5 \\
1 & 1 & 1 & 1 & \\
\hline
\end{tabular}

\section*{LOCAL PARTNER/SAFETY FOCUSED REHABILITATION Conceptual Sequence}

4
Completion of Multiple Rehabilitations/Local Partner Phases


\title{
LOCAL PARTNER/SAFETY FOCUSED REHABILITATION Conceptual Sequence
}

Final Phase - Full 4-Lane Expressway


\section*{APPENDIX O: EXPRESSWAY PASSING SEGMENTS}

NO


\section*{YES}


M I L E S
183 of 209

\section*{APPENDIX P: SPEED DIFFERENTIAL - LITERATURE REVIEW}

Abbreviations:
DSL - Differential Speed Limit
USL - Uniform Speed Limit
In response to public comments provided to System Planning staff regarding the perceived negative operational impact of the differential speed limit (currently 55 mph for trucks and 65 mph for other vehicles) along US 395, eighteen studies comparing DSLs with USLs were reviewed. The studies were dated from 1991-2016, with only four of them focusing on two-lane highways. Most of the research available evaluated DSLs vs. USLs along highways with four or more lanes, which have significant operational differences compared to two-lane highways. The four-lane studies generally showed that there was some positive impact from changing to a USL. Due to the differences between two-lane and four-lane highways, only research pertaining to two-lane highways is presented below.


The first part of this appendix provides a summary of the studies. The second section provides a brief summary of each study.

\section*{Section 1: Summary}

\section*{Rural Two-Lane Highways}

Four studies were reviewed that compared DSLs to USLs on two-lane highways. Three of the studies applied modeling to study DSLs. Only one study used field studies and surveys for its research. Table 45 provides System Planning staff interpretation of some of the main findings in the studies.

Table 45: Studies about Rural Two-Lane Highways
\begin{tabular}{|c|c|c|c|c|c|}
\hline Performance Category & Finding & Number of Studies supporting finding & Support for Universal Speed Limit on US 395? & Number of Studies that support the opposite & Opposite
Finding Finding \\
\hline \multirow[t]{2}{*}{Speed} & Less variability in travel speeds with USL & \(\checkmark\) & Yes & & \\
\hline & DSL reduced average travel speed compared to USL & \(\checkmark\) & Possibly & & \\
\hline Percent Time Spent Following & Slight increase in percent time spent following with DSL than USL & \(\checkmark\) & Yes & & \\
\hline \multirow[t]{4}{*}{Types of Passing} & More overall passing with DSL than USL & \(\checkmark \quad \checkmark \quad \checkmark\) & Yes & & \\
\hline & Less car-car passing with DSL than USL & \(\checkmark \checkmark\) & & & \\
\hline & More car-truck passing with DSL than USL & \(\checkmark \quad \checkmark \quad \checkmark\) & Yes & & \\
\hline & Less truck-truck passing with DSL & \(\checkmark\) & No & & \\
\hline \multirow[t]{3}{*}{Passing Characteristics} & Gap acceptance neither increased nor decreased with DSL vs. USL & \(\checkmark\) & Neutral & & \\
\hline & No difference between USL and DSL in "desire to overtake mode" & \(\checkmark\) & Neutral & & \\
\hline & No difference between USL and DSL in average time-tocollision & \(\checkmark\) & Neutral & \(\checkmark\) & Slight increase in head-on time-to-collision with DSL \\
\hline \multirow[t]{3}{*}{Public Opinion and Study Outcomes} & Motorists have mixed opinions on USL vs. DSL & \(\checkmark\) & Neutral & & \\
\hline & Trucking industry favors USL & \(\checkmark\) & Yes & & \\
\hline & Study supports USL & \(\checkmark\) & Yes & & \\
\hline
\end{tabular}

In spite of the limited research, conclusions can still be drawn from the studies that do exist today. For instance, in the table above, notice that three of the studies found more car-truck passing and
a minimal increase in overall passing with DSL as compared to USL. If the goal is to try to reduce overall and car-truck passing on two-lane highways, then a USL might help achieve that goal.

Most of the rest of the findings are either neutral or somewhat suggest support for a USL. DSLs only appear to be better than USLs in terms of reduced car-car passing and minimal truck-truck passing.

Given the limited research about DSLs on rural two-lane highways, it is difficult to draw strong conclusions about whether a USL is better than a DSL. There appears to be some overall benefit to USL, however, more research will be needed.

Caltrans Division of Research, Innovation and System Information (DRISI) manages a comprehensive program to research, develop, test, and evaluate transportation innovations sought by its customers. These innovations in methods, materials, and technologies enable Caltrans to promote safety, enhance mobility and sustainability, improve the management of public facilities and services, and protect public investment in transportation infrastructure.
\begin{tabular}{|c|}
\hline Recommendation \\
Establish research project to evaluate potential benefit of a universal \\
speed limit for US 395.
\end{tabular}

\section*{Section 2: Brief Summary of Each Study}

Ghods, A., Duong, D., Saccomanno, F., \& Hellinga, B. (2011)
The authors state that gap acceptance behavior for passing can be influenced by the presence of large trucks. They apply this idea to modeling passing on rural two-lane highways. Results include:
- DSL increases number of car-truck overtaking maneuvers, therefore compromising safety.
- Gap acceptance risk was not significantly increased or decreased.

\section*{Ghods, A. H., Saccomanno, F., Guido, G., (2012)}

This study observed the following three overtaking-related factors of a microscopic traffic simulation model of a 6 km segment of two-lane highway: 1) Number of vehicles overtaking, 2) Percent time spent in "desire to overtake mode," and 3) Average Time-to-Collision with the on-coming vehicle prior to retuning to the original lane. Findings include:
- Very few truck-truck overtaking maneuvers.
- Only a minimal increase in passing overall with DSL compared to USL.
- However, there was an increase in the proportion of car-truck passing on two-lane highways with DSL, suggesting a "negative effect on safety resulting from differential speed strategy applied to two-lane rural highways."
- On the other hand, DSL strategies were observed to reduce car-car overtaking, thereby increasing safety. Authors hypothesize that the slower trucks might have a "calming
effect" on traffic stream and result in fewer interactions between cars.
- No difference observed in "desire to overtake mode" and average time-to-collision when comparing USL and DSL strategies.

\section*{Montana Department of Transportation. (2016)}

Montana compared its existing 70/60 mph DSL rural two-lane highways to neighboring states' 65 mph USL rural two-lane highways. The study noted the limited body of research applying to twolane highways, and that such facilities have different operational issues than freeways do, such as passing limitations and queuing. Results of the study include:
- Locations with a 65 mph USL speed limit displayed less variability in travel speeds, shorter platoon lengths, less high-risk passing behavior, and fewer crashes.
- Surveys were conducted asking motorists and trucking industry representatives whether they preferred the 70/60 mph DSL or the 65 mph USL. Motorist response was mixed, but the trucking industry favored the USL.
- Findings support transitioning to a uniform 65 mph speed limit on two-lane rural highways in Montana.
- Study recommends selective implementation, favoring transition to USL of 65 mph along highways possessing relatively high volumes, relatively high truck percentages, and limited passing opportunities.

Ghods, A. H., Ph.D., P. Eng., \& Saccomanno, F. F., Ph.D., P. Eng. (2016)
This study applied a microscopic simulation model to assess the safety of DSL for two-lane highway operations, with emphasis on the overtaking maneuver. Results include:
- Positive impacts to safety of DSL include:
- Reduction in average travel speed (ATS) (Note: this is based on the author's acceptance of the argument that a lower ATS results in enhanced safety).
- Slight increase in head-on time-to-collision (TTC, not to be read as "head on collisions").
- Significant decrease in car-car overtaking.
- Negative impacts to safety of DSL include:
- Slight increase in percent time spent following (PTSF).
- Significant increase in car-truck overtaking.
- Slight increase in total number of overtakes.

\section*{APPENDIX Q: SAMPLE GENERAL PLAN POLICIES}

Most decisions involving the future growth of California are, and will continue to be, made at the local level within a framework of officially approved statewide goals. To accomplish this, California state law requires each city and county to adopt a general plan for the physical development of the county or city. The general plan expresses the community's development goals and embodies public policy relative to the distribution of future land uses, both public and private (State of California, General Plan Guidelines, 2017 Update, Governor's Office of Planning and Research).

Lassen County is responsible for preparing the general plan and implementing land use policy along the portion of US 395 proposed for upgrade to four-lane divided expressway (LAS PM 0.0/61.06). A supportive framework of policies and actions in the Lassen County General Plan is essential to achieve this goal. The manner in which the County regulates where and when development can occur and what conditions must be satisfied for it to occur will facilitate or hinder progress toward this goal. Preservation of right-of-way, construction of frontage roads, control of highway access, collection of fees to fund improvements and other necessary actions may all be addressed in the Lassen County General Plan.

The following is a sampling of general plan policies from around California that are relevant for consideration during future updates to the Lassen County General Plan. The samples cover topics including right-of-way, highway access, travel demand management and fees. The list is not intended to prescribe any given policy or topic for the plan, rather it is meant to foster discussion about what actions can or should be done to help achieve the four-lane divided expressway concept. Usage of "shall" rather than "should" in policies will be an important consideration.

\section*{"Shall" versus "Should"}
'When writing policies, be aware of the difference between 'shall' and 'should.' 'Shall' indicates an unequivocal directive. 'Should' signifies a less rigid directive, to be honored in the absence of compelling or contravening considerations. Use of the word "should" to give the impression of more commitment than actually intended is a common but unacceptable practice. It is better to adopt no policy than to adopt a policy with no backbone." Source: State of California, General Plan Guidelines, 2017 Update, Governor's Office of Planning and Research.

\section*{Right of Way/Roads:}

Proposed projects shall be required to reserve or dedicate sufficient rights-of-ways for, or shall be designed to maintain opportunities for, the future expansion of interchanges, intersections, roadways, highways and transit needs as determined by the County Public Works Department.

The County shall require dedication of right-of-way or dedication and construction of planned transportation facilities as a condition of land development, and require an analysis of impacts of traffic from all land development projects including impacts from truck traffic.

The County shall plan and implement a complete road network to serve the needs of local traffic. This road network shall include roadways parallel to regional facilities so that the regional roadway
system can function effectively and efficiently. Much of this network should be funded and/or constructed by new development.

The County shall identify locations of needed future road rights-of-way, consistent with adopted functional classifications, through development and adoption of specific plan lines where appropriate. Circumstances where specific plan line development should be considered include the following:
- Where major classified roadways or corridors are expected to require additional through lanes within a 20-year planning horizon;
- Where the future alignment is expected to deviate from the existing alignment, or to be developed asymmetrically about the existing section or center line;
- Where the adjacent properties are substantially undeveloped, so that property owners may benefit from prior knowledge of the location of rights-of-way of planned roadways before constructing improvements or developing property in a way which may ultimately conflict with identified transportation needs; and
- Expressways and associated frontage roads.

\section*{Road and Highway Access:}

Require whenever practicable, driveway access to buildings from frontage roads, side streets or alleys in order to minimize interference with vehicular movement and pedestrian access (for properties with frontage along major or secondary highways).

The County shall develop specifications for new or modified access to property abutting a public roadway or highway. A process for exceptions to the access standards may be identified, provided that the designed safety and operational characteristics of the existing and planned roadway facility will not be substantially diminished as determined by the agency responsible for the facility.

On arterial roadways and thoroughfares, intersection spacing should be maximized and driveway encroachments minimized.

Expressway Access. Limit driveway intersections to maximize safety and traffic-carrying capacity, and to maintain the high-speed character of expressway routes. Street intersections shall be minimal, with an average spacing of at least one-half mile between intersections, with preferred spacing of more than one mile.

\section*{Demand Strategies:}

Require large employers to develop and maintain transportation demand management programs to reduce the number of vehicle trips generated by their employees.

\section*{Consider the following strategies:}
- Market incentives (including vehicle miles traveled charges;
- Voluntary rideshare measures;
- Parking pricing;
- Preferential parking;
- Shuttle services to activity centers and special events;
- Enhanced transit;
- Bicycle paths and storage facilities;
- Telecommute incentives.

\section*{Fees:}

Implement procedures to achieve fair-share participation of the private sector in financing transportation improvements.

The County shall assess fees on new development sufficient to cover the fair share portion of that development's impacts on the local and regional transportation system.

Development projects shall construct or fund improvements necessary to mitigate the effects of traffic from the project. The County may allow a project to fund a fair share of improvements that provide significant benefit to others through traffic impact fees.

The County shall assess fees on new development sufficient to cover the fair share portion of that development's impacts on the local and regional transportation system. Exceptions may be made when new development generates significant public benefits (e.g., low income housing, needed health facilities) and when alternative sources of funding can be identified to offset foregone revenues.

\section*{APPENDIX R: SAMPLE REGIONAL TRANSPORTATION PLAN POLICIES}

The Lassen County Transportation Commission (LCTC) is one of 43 Regional Transportation Planning Agencies (RTPA) in California, created under Section 29535 of the Government Code. Consistent with state law, the LCTC consists of three members of the Susanville City Council and three members of the Lassen County Board of Supervisors. The LCTC also includes a Caltrans District 2 representative as a non-voting ex-officio member. The principal purposes of RTPAs in rural areas are to prepare and adopt planning and programming documents and allocate/ administer various funding programs that involve cities, counties, and transit operators. Source: Lassen County Transportation Commission, www.lassentransportation.com

Every RTPA is required by law to conduct long range planning to ensure that the region's vision and goals are clearly identified and to ensure effective decision making in furtherance of the vision and goals. The long range plan, known as the Regional Transportation Plan (RTP) is developed by RTPAs in cooperation with Caltrans and other stakeholders, including system users. The purpose of the RTP is to establish regional goals; identify present and future needs, deficiencies and constraints; analyze potential solutions; estimate available funding; and propose investments. The RTP should encourage and promote the safe and efficient management, operation and development of a regional transportation system that, when linked with appropriate land use planning, will serve the mobility needs of goods and people.
Source: 2017 RTP Guidelines, California Transportation Commission, January 2017.
The current Lassen County RTP was adopted by the LCTC in September of 2012. Policies in the RTP that are relevant and support future upgrade of US 395 to four-lane expressway between PM 0.0 and 61.06 include:
1.13 POLICY: The LCTC shall support the incremental addition of lanes on U.S. 395 to a four-lane expressway and work with Caltrans in the consideration and implementation of access management policies to protect traffic efficiency and safety and to facilitate future highway improvements. Such measures include the limitation of new encroachments onto U.S. 395. The LCTC shall support an increased number of passing lanes where a four-lane expressway is not feasible.
6.1 POLICY: Periodically review traffic operations along State highways and major county roads. Promote signal timing, access management, transit priority treatments, accident scene management measures, and closed circuit TV to help increase traffic flow.

The following is a sampling of additional RTP policies adopted by other RTPAs around California that may be relevant for consideration during future updates to the Lassen County RTP. The list is not intended to prescribe any given policy or topic for the plan, rather it is meant to foster discussion about what actions can or should be done to help achieve the four-lane expressway concept.
- Support federal legislation increasing funds available for all transportation modes by formal resolution and petitioning local representatives in Congress.
- Pursue new sources of funds for maintenance, expansion, and improvement of transportation facilities and services.
- Support development of viable alternative fund sources such as a local transportation sales tax, local option motor vehicle fuel tax, public/private partnerships, peak hour congestion pricing, and bond measures.
- Encourage responsible agencies to consider formation of assessment districts for assisting in the financing of projects and programs included in the Regional Transportation Plan, when feasible.
- Encourage new development and private sector activities to fully mitigate their impacts to the transportation system through the provision of highways, roads, transit, pedestrian, and bicycle facilities as planned by local agencies.
- Encourage local agencies to fund local arterial access and traffic capacity projects with local development-based fees supplemented with other local funds as appropriate.
- Support the economic vitality of the region, funding priority shall be given to major road and highway improvements that address critical safety concerns and provide increased capacity for commuter and commodity travel.
- Seek to preserve regional and State funding programs (such as the STIP) for improvement and expansion of arterial roadways and the State Highway System.
- Fund project development activities (such as environmental studies) on large and/or hardto implement projects so that they are ready for ad hoc funding opportunities.
- Work with Caltrans and local agencies to obtain right-of-way dedications for designated future interchanges and along mainline portions of state highways within the regional transportation system.
- Study, coordinate discussions, and explore options for establishing a region-wide program dedicated to funding the growing need for roadway improvements and reconstruction on designated arterial truck routes.
- Transportation planning and projects shall facilitate secure and efficient movement of freight in a manner consistent with the general mobility needs of the region by:
- Making efficient use of existing transportation system.
- Identifying and constructing projects to improve freight movement, including rail and highway projects.
- Addressing freight and goods movement facility improvement needs as a high priority.
- Considering freight and goods movement in the design and planning of all projects.
- Planning for intermodal connectivity (airport, rail, and highway) in freight and goods movement

The following goal, objectives and strategies are from the Shasta County Regional Transportation Plan prepared by the Shasta Regional Transportation Agency:

\section*{GOAL \#2:}

Strategically increase capacity on interregional and regionally significant roadways to keep people and freight moving effectively and efficiently.

Oblective 2.1 - Maximize funding available for transportation and mobility improvements in the region.

\section*{Strategies}
A. Utilize the region's limited transportation funds to leverage additional state and federal investment (long range).
B. Work with regional partners (including the California Association of Councils of Governments and sixteen-county North State Super Region) to bring about consistent and sustainable transportation funding sources (long range).
C. Work with state and federal partners to secure funding for transportation projects, planning, and programs that address the impacts of non-local traffic (i.e. interregional and through-trips) (short range).
D. Position the region to compete for discretionary state and federal transportation funds by developing 'shovel-ready' projects (short range).
E. Utilize 'fair share' methodology for ascribing transportation infrastructure funding responsibility to appropriate transportation system users and beneficiaries (short range).
F. Explore potential local transportation revenue options (short range).

Objective 2.2. Maintain adequate traffic capacity on the core interregional network

\section*{Strategies}
A. Employ targeted capacity increasing projects to relieve traffic bottlenecks and improve travel time reliability (long range).
B. Facilitate freight consolidation and intermodal options to reduce travel demand on core interregional routes (short range).
C. Preserve roadway right-of-way needed for future roadway expansion (long range).
D. Consider transportation enhancements on arterial roadways that would relieve local travel demand on the core interregional network (long range).

\section*{APPENDIX S: FOUR-LANE DIVIDED EXPRESSWAY HISTORY}

Since the 1980s, the concept has been to expand the section of US 395 from the SR 70 junction to the SR 36 junction to a four-lane divided expressway. At the time, forecasts were generated suggesting that four lanes were needed to maintain the then-concept level of service B. Improving safety, reducing delay and increasing capacity were additional reasons to expand US 395 to four lanes.

Below is a bulleted timeline which shows key efforts since the 1970s to expand US 395 from two to four lanes. The first section widened was from the Nevada state line to just north of the Hallelujah Junction. To this day, it is the only four lane section between the Nevada state line and Susanville.

\section*{Timeline}
- Early 1970s: The portion from the Nevada state line to Hallelujah Junction became a divided four-lane expressway
- 1980s: Coordination among Caltrans and external stakeholders, such as Lassen County, FHWA and SIAD regarding access control and other expansion-related topics.
- 1985: Lassen County passes resolution recognizing need for four lanes along US 395 and supporting a controlled access highway agreement.
- 1990: Caltrans develops a draft Transportation Corridor Fact Sheet, saying that "a fourlane divided expressway is required NOW to meet the concept LOS B."
- 1990: Caltrans develops a U.S. Highway 395 Task Force Access Management Status Report to coordinate protection of access control and right of way. The report also lists tools the county can use through its zoning, subdivision and permit control to manage access where the state does not have access control.
- 1991: Four-Lane Expressway Project Study Report (LAS R4.7/7.8) presented a concept to add two lanes east of the existing corridor to address safety and delay warrants. Capacity and LOS are secondary warrants. The outcome of the report is that two alternatives (Alternative A and Alternative \(B\) ) were proposed; the primary differences between them include different median widths, different phasing and different profile grades.
- 1992: District submitted proposal to FHWA to conduct planning studies along US 395.
- 1993: Supplemental Project Study Report (LAS R4.7/9.0) was created because Alternative A from the 1991 PSR was eliminated. A third alternative, Alternative C, with a northern project limit of LAS 9.0 was proposed. Alternative \(C\) was proposed in order to mesh with a 1993 construction project to add alternating northbound and southbound passing lanes from LAS 9.0 to 11.8. Only the passing lane section (LAS 9.0 to 11.8) was constructed.
- 1999: Lassen County adopts general plan. Within the circulation element are non-binding policies outlining County responsibilities in order to facilitate expansion of US 395 to a four-lane expressway standard.
- Mid- to late- 2000s: Discussions with the Lassen County Transportation Commission and the public regarding development of an expressway study.
- 2007-2010: Honey Lake Expressway Study (draft).

\section*{Honey Lake Expressway Master Plan Summary}

The Honey Lake Expressway Master Plan was started in 2007 and was developed to a draft level to recommend a process for widening the section between Hallelujah Junction and Susanville to four lanes. The plan uses the four-lane section between the Nevada state line and Hallelujah Junction as an example. Desired features include a wide divided natural median, consolidated access points, paved and unpaved frontage roads, deer fencing and crossings, limited at-grade intersections and interchanges.

\section*{Key Actions Identified}
- Consolidation of access points to approximately 13 interchanges or at-grade intersections, spaced 2.5-7 miles apart.
- Coordinate with local stakeholders and the public to identify approximate locations.
- Acquire additional right of way along entire corridor.
- Install new, or if present, use existing roads as frontage roads.
- Add animal crossings through balancing cost, constructibility and effectiveness. One particular recommendation included tunnels under the highway which could also accommodate farm equipment.
- Add deer fencing where needed.
- Carefully consider locations for new utility poles.
- Realignment of the highway might be needed in close proximity to communities along the corridor.
- Ensure future mitigation sites are outside of the proposed highway alignment.
- Use innovative project development and delivery techniques such as building new lanes/closing old lanes in lieu of rehabilitating existing lanes and developing passing opportunities as four-lane expressway segments rather than traditional passing lanes.


Figure 36. Four-Lane Divided Expressway At-Grade Intersection (LAS 2.0)
This at-grade intersection at PM 2.0 is typical of the proposed 60 -mile master plan concept. Median here is 150 feet with natural vegetation. Local roads are paved within the state right of way, then transition to gravel or dirt outside state right of way. For new expressway locations, the median would be 150 feet (southernly 30 miles) and 70 feet (northerly 30 miles) with approximately 50 miles of frontage roads to control access.

\section*{APPENDIX T: GLOSSARY OF TERMS AND ACRONYMS}

\section*{Aa}

Access Control: The condition where the right of owners or occupants of abutting land or other persons to access in connection with a highway is fully or partially controlled by public authority.

Access Management: Involves managing where vehicles enter the highway to improve highway operations and reduce accidents.
Access Point: Location where vehicles can enter or exit a highway.
Agricultural Inspection Stations: These stations conduct agricultural inspections on all private and commercial vehicles near major borders.

Air Basin: An area or territory that contains similar meteorological and geographical conditions. In California, the Air Resources Board (ARB) has established nine air basins.

Air Quality: A general term used to describe various aspects of the air that plants and human populations are exposed to in their daily lives.

All-Way Stop Control: Traffic control at an intersection where all approaches are controlled by stop signs.
Americans with Disabilities (ADA): In 1990, the act was enacted, which prohibits discriminations against persons because of their disabilities.

Ancestral boundaries: The boundaries represent the areas that were once inhabited by Indian Tribes to camp, hunt, fish, and gather vegetation for food consumption and basketry material, or had sacred ceremonial and burial sites.

Annual Average Daily Traffic (AADT): Daily traffic that is averaged over a calendar year or fiscal year.
At-grade Crossings: \(A\) junction at which two or more intersections cross at the same grade
Attainment: Air quality status indicates that the area has never been designated non-attainment for that particular standard.
Arterial: A class of street that primarily serves through-traffic and major traffic movements.
Auxiliary Lane: The portion of the roadway for weaving, truck climbing, speed change, or other purposes supplementary to through traffic movement.

Average Daily Traffic (ADT): The average number of vehicles passing a specified point during a 24 -hour period. Frequently used in relation to the "peak-month" average daily traffic.

\section*{Bb}

Bicycle Status: The ability to ride the bike on the freeway or provide an alternate facility for bicycle travel.
Bike Route Class: Classification of a bicycle facility. There are three classes:
Class I - (bicycle facility separate from roadway) provides completely separated right-of-way for the exclusive use of bicycles and pedestrians with cross flow minimized.

Class II - (designated bicycle facility adjacent to roadway) provides a striped lane for one-way bike travel on a street or highway.

Class III - (non-designated but open to bicycles) provides for shared use with pedestrians or motor vehicle traffic.
Bridges: Structures of more than 20 feet in length that span a body of water.

\section*{Cc}

California Environmental Quality Act (CEQA): 1970 state legislation which requires state agencies to regulate activities with major consideration for environmental protection.

California Transportation Commission: A body appointed by the governor responsible for the STIP, the development of the RTP guidelines, and the statewide transportation policy.

Caltrans or Department: California Department of Transportation.
Capacity: The number of vehicles that a facility can accommodate during a specified period of time. It represents the flow rate that can be achieved during peak periods of demand. Capacity is also used to estimate the maximum amount of traffic that a facility can accommodate while maintaining a prescribed level of operation (Level of Service).

Capacity-Increasing Projects: Projects that allow for more capacity on the roadway such as adding a lane.
Chain Locations: These are the signed locations that drivers are allowed to stop and pit on chains.
Changeable Message Signs (CMS): Electronic signs that can change the message it displays. Often used on highways to warn and redirect traffic. Also referred to as variable or electronic message signs.

Channelization: The separation or regulation of conflicting traffic movements into definite paths of travel by the use of pavement markings, raised islands, or other suitable means to facilitate the safe and orderly movement of both vehicles and pedestrians.

Clean Air Act: A 1990 environmental policy act relating to the reduction of smog and air pollution.
Clear Recovery Zone: An area clear of fixed objects adjacent to the roadway to provide a recovery zone for vehicles that have left the traveled way. A minimum clear recovery area of 20 feet on conventional highways and 30 feet on freeways and high-speed expressways is desirable.

Climbing lane: A lane added on an uphill grade for use by trucks, recreational vehicles, and other heavy vehicles with speeds significantly reduced by grade.

Closed Circuit Television (CCTV): This ITS technology allows a camera to display remote verification of road and weather conditions, traffic conditions, and incidents. This television can have compatibility with other communications technologies, such as cable TV, kiosks, and the internet.

Collector Road: A collector road or distributor road is a low-to-moderate-capacity road which serves to move traffic from local streets to arterial roads.

Commercial Airports: Publicly owned airports that have at least 2,500 passenger boarding's each calendar year and receive scheduled passenger service.

Concept: A strategy for future improvements that will reduce congestion or maintain the existing level of service on a specific route.
Concept LOS: Used to describe the target operational condition for a facility during the twenty-year planning horizon of the Transportation Concept Report. Planning studies for projects to improve highway capacity should begin at the time when a highway segment is projected to reach the concept LOS.

Conformity: Process to assess the compliance of any federally funded or approved transportation plan, program, or project with air quality implementation plans. The conformity process is defined by the Clean Air Act.

Congestion: Defined as reduced speeds of less than 35 miles per hour for longer than 15 minutes.
Context Sensitive Solutions: Caltrans utilizes this process to ensure that transportation projects are in harmony with communities, and that intrinsic qualities such as historic, aesthetic, and scenic resources are enhanced and preserved.

Conventional Highway: A highway without control of access, which may or may not be divided. Grade separations at intersections or access control may be used when justified at spot locations.

Corridor: A set of essentially parallel transportation facilities for moving people and goods between two points.
Corridor Preservation: Identify and discuss the locations targeted for corridor preservation, and address existing and future rail and highway corridor, and seaport and airport facility land reservation needs.

Cultural Resources: Encompass archaeological traditional and built resources including but not necessarily limited to buildings, structures, objects, districts, and sites.

\section*{Dd}

Daily Vehicle Miles of Travel: An estimate of Annual Vehicle Miles of Travel is the product of AADT x Segment Length x 365 days.
Delay: The time lost while traffic is impeded by some element over which the driver has no control.

Demographics: refers to selected population characteristics.
Density: The number of vehicles per mile (or per lane per mile) on the traveled way at a given instant.
Design Speed: A speed selected to establish specific minimum geometric (horizontal, vertical, site distance) design elements for a particular section of highway.

Directional Split: During the peak period, the directional distribution of traffic.
District: Department of Transportation Districts.
Divided Highway: A highway with separated roadbeds for traffic in opposing directions.

\section*{Ee}

Easement: A right to use or control the property of another for designated purposes.
Elevation: A location's height above a fixed reference point, often measured from mean sea level.
Encroachment: Occupancy of project right-of-way by non-project structures or objects of any kind or character.
Exit Number: This is a unique numbering system for freeways across California. The numbering system runs from south to north and from west to east.

\section*{Ff}

Facility Concept (Route Concept): General term used to describe the number of lanes and degree of access control on a State Route or Freeway. The term can be used to describe the existing facility or the future facility that will be required to handle projected traffic volumes within adopted level of service standards.

Present Facility Concept: Defines the current built facility.
Twenty-Year Facility Concept: Defines the desired facility during the next twenty years.
Long-Range (Post Twenty-Year): Defines the facility that may ultimately be needed sometime beyond the twenty-year planning horizon.

Federal Highway Administration (FHWA): An agency of the US Department of Transportation that funds highway-planning programs.
Federal Highway Administration (FHWA): An agency of the US Department of Transportation that funds highway planning programs.
Federal Transit Administration (FTA): An agency of the US Department of Transportation that funds transit planning and deployment programs.

Federally Recognized Tribes: Those Native American Tribes recognized by the US Bureau of Indian Affairs for certain federal government purposes.

Fee Title: This is the highest possible form of ownership in real property. It entitles the owner to use the property in any manner consistent with federal, state, and local laws and ordinances.

Free Flow Speed: The average speed of vehicles on a given facility, measured under low-volume conditions, when drivers tend to drive at their desired speed and are not constrained by delay from traffic control devices.

Freeway: A divided arterial highway with full control of access and with grade separations at intersections. A freeway, as defined by statute, is also a highway in respect to which: (1) the owners of abutting lands have no right or easement of access to or from their abutting lands; or (2) such owners have only limited or restricted right or easement of access.

Functional Classification: Guided by federal legislation, refers to a process by which streets and highways are grouped into classes or systems according to the character of the service that is provided (i.e., Principal Arterials, Minor Arterials and Major Collectors).

\section*{Gg}

General Aviation: General aviation refers to all flights other than military and scheduled airline flights, both private and commercial.

General Plans: A policy plan of acceptable land uses in each jurisdiction. Each city and county adopts and updates their General Plan to guide the growth and land development of their community, for both the current and long term.

Geometric Design: Geometric design is the arrangement of the visible elements of a road such as alignment, grades, sight distances, widths, slopes, etc.

Goods Movement: The general term referring to the goods or produce transported by ship, plane, train, or truck.
Grade: As used in capacity analysis, grade refers to the average change in elevation on the segment under study, expressed as a percentage.

\section*{Hh}

Highway: Term applies to roads, streets, and parkways, and also includes right-of-way, bridges, railroad crossings, tunnels, drainage structures, signs, guard rails, and protective structures in connection with highways.

Highway Advisory Radio (HAR): An ITS technology that provides valuable information to travelers through prerecorded messages that contain traffic information, road conditions, chain requirements and road closures, etc. Transmission is generally accomplished through low-powered AM broadcast.

Highway Advisory Radio (HAR) Flasher: An ITS technology that signals the traveling public that information is available for a specific route via a nearby transmitting HAR.

Highway Capacity Manual (HCM): Updated in 2000 by the Transportation Research Board of the National Research Council, the HCM presents various methodologies for analyzing the operation (Level of Service) of transportation systems.

Highway Classification: For purposes of capacity analysis, separation of two-lane highways into Class I, II or III. Class I includes major interregional routes, Class II includes smaller links in the system and Class III includes segments of two-lane highway in smaller developed areas or communities.

\section*{Ii}

Improved LOS: This represents the LOS that will be achieved if identified capacity improvements are completed.
Incident: Any occurrence on a roadway that impedes the normal flow of traffic.
Incident Management: the activities of an organization to identify, analyze, and correct hazards.
Intelligent Transportation Systems (ITS): Use of advanced sensor, computer, and electronic systems to increase the safety and efficiency of the transportation system.

Interchange: A system of interconnecting roadways in conjunction with one or more grade separations providing for the interchange of traffic between two or more roadways on different levels.

Intermodal: The ability to connect, and make connections between modes of transportation.
Interregional Transportation Strategic Plan (ITSP): The ITSP identifies six key objectives for implementing the Interregional Improvement Program and strategies and actions to focus improvements and investments. This document also addresses development of the interregional road system and intercity rail in California, and defines a strategy that extends beyond the 1998 State Transportation Improvement Program (STIP).

Intersection: The general area where two or more roadways join or cross, which include roadside facilities for traffic movements in that area.

Interstate Highway System: The system of highways that connects the principal metropolitan areas, cities, and industrial centers of the United States. The Interstate System also connects the US to internationally significant routes in Mexico and Canada.

\section*{Jj}

Intentionally left blank

\section*{Kk}

Intentionally left blank

Land Use: The human modification of natural environment or wilderness into built environment, such as fields, pastures, and settlements.

Lane Width: The arithmetic mean of the lane widths of a roadway in one direction expressed in feet.
Left-Turn Lane: A storage area designated to only accommodate left turning vehicles.
Level-of-Service (LOS): A rating using qualitative measures that characterize operational conditions within a traffic stream.
Local Street or Local Road: A street or road primarily used for access to residences, businesses, or other abutting property.

\section*{Mm}

Maintained Miles: The length of a facility that is preserved and kept in the safe and usable condition, to which it has been improved.
Maintenance Service Level (MSL): For maintenance purposes, routes within the state highway system are assigned a Maintenance Service Level classification of either Class 1, 2, or 3.

Median: The portion of a divided highway separating the traveled ways for traffic in opposite directions.
Median may be a solid barrier, an unpaved surface, or designated by markings on the highway.
Metropolitan Planning Organization (MPO): By federal provision, the Governor designates this organization by principal elected officials of general-purpose local governments. MPOs are established to create a forum for cooperative decision making. Each MPO represents an urbanized area with a population of over 50,000 people.

Mixed Flow: Traffic movement having automobiles, trucks, buses, and motorcycles sharing traffic lanes.
Mode Choice: Type of transportation: auto, bicycle, bus, pedestrian, rail, etc.
Multimodal: The availability of transportation options using different modes within a system or route.

\section*{Nn}

National Environmental Policy Act (NEPA): 1969 legislation requiring all federal agencies to prepare an environmental impact statement evaluating proposed federal actions which may significantly affect the environment.

National Scenic Byway (NSB): To be designated as a NSB, a road must possess at least one of the following six intrinsic qualities: archaeological, cultural, historic, natural, recreational, or scenic. The significance of the feature(s) contributing to the distinctive characteristics of the corridor's intrinsic qualities must be recognized throughout the multi-state region.

Non-attainment: Areas with air quality levels that exceed the standard for specific pollutants.
Non-federally Recognized: Native American Tribes not recognized by the US Bureau of Indian Affairs for certain federal government purposes.

Nonmotorized Transportation: Transportation that includes bicycle and pedestrian travel to permit the transport of people.

\section*{Oo}

Operational Improvements: Improvements addressing deficiencies related to the flow and movement of traffic without expanding design capacity. Some examples include adding auxiliary and truck climbing lanes, ramp metering, and intelligent transportation systems.

\section*{Pp}

Passing Lane: A lane added to improve passing opportunities in one direction of travel on a two-lane highway.
Peak Hour: The period during which the maximum amount of travel occurs. It may be specified as the morning (a.m.) or afternoon or evening (p.m.) peak

Peak Hour Factor: The hourly volume during the maximum-volume hour of the day divided by the peak 15 -minute flow rate within the peak hour; a measure of traffic demand fluctuation within the peak hour.

Posted Speed: A road speed limit is the maximum speed as allowed by law for road vehicles.

Post Mile (PM): Using miles and counties, the PM system identifies specific and unique locations in the California highway system.
Post Mile Prefix: The post miles are prefixed with an alpha code whenever the location on the route is not an original post mile. Examples of prefixes. \(R\) (first realignment, when a section of the road is relocated), \(L\) (overlap post mile) and \(E\) (post mile equation).

Prescriptive: Type of easement that comes into existence without formal action because of long-term historical use in a route. A prescriptive right cannot be established over land owned by a governmental entity.

Programming: Process of scheduling high-priority projects for development and implementation.
Project Initiation Documents (PIDs): Documents that identify in detail the cost, scope, and schedule of a project and provide the basic information necessary for better understanding the nature of the project. A PID must be completed for any project to be programmed.

Project Report: Report summarizing the feasibility of needs, alternatives, costs, etc., of a proposed transportation project affecting state transportation facilities. Often project reports consist of a Transmittal Letter and a draft environmental document.

Public Participation: The active and meaningful involvement of the public in the development of transportation plans and programs.
Public Transportation: Transportation service to the public on a regular basis using vehicles that transport more than one person for compensation, usually but not exclusively over a set route or routes from one fixed point to another. Routes and schedules may be determined through a cooperative arrangement.

\section*{Qq}

Queues: A line of vehicles, bicycles, or persons waiting to be served by the system in which the flow rate of the front of the queue determines the average speed within the queue.

\section*{Rr}

Ramp: A connecting roadway between a freeway or expressway and another highway, road, or roadside area.
Regional Transportation Plan (RTP): State-mandated documents to be developed biennially by all Regional Transportation Planning Agencies (RTPAs). They consist of policy, action, and financial elements.

Regional Transportation Planning Agency (RTPA): Created by AB 69 to prepare regional transportation plans and designated by the Business, Transportation and Housing (BT\&H) secretary to receive and allocate transportation funds. RTPAs can be Councils of Government (COGs), Local Transportation Commissions (LTCs), Metropolitan Planning Organizations (MPOs), or statutorily-created agencies.

Rehabilitation: Activities which preserve the quality and structural integrity of a roadway by supplementing normal maintenance activities.

Relinquishment: A transfer of the state's right, title, and interest in and to a highway, or portion thereof, to a city or county.
Resurfacing: A supplemental surface or replacement placed on an existing pavement to restore its riding qualities or increase its strength.

Right-of-Way: Real estate acquired for transportation purposes, which includes the facility itself (highway, fixed guideway, etc.) as well as associated uses (maintenance structures, drainage systems, roadside landscaping, etc.).

Roadbed: That portion of the roadway extending from curb line to curb line or shoulder line to shoulder line. Divided highways are considered to have two roadbeds.

Roadside: A general term denoting the area adjoining the outer edge of the roadbed. Areas between the roadbeds of a divided highway may also be considered roadside.

Roadway: That portion of the highway included between the outside lines of the sidewalks, or curbs and gutters, or side ditches including also the appertaining structures, and all slopes, ditches, channels, waterways, and other features necessary for proper drainage and protection.

Road Weather Information Systems (RWIS): This ITS system collects pavement temperature, visibility, wind speed and direction, and precipitation data and presents the data in a usable format to transportation system operators, potentially for the traveling public.

Roundabouts: A road junction at which traffic streams circularly around a central island.

Route Concept (Facility Concept): General term used to describe the number of lanes and degree of access control on a State Route or Freeway. The term can be used to describe the existing facility or the future facility that will be required to handle projected traffic volumes within adopted level of service standards.

Rural: An area with widely scattered development and a low density of housing and employment.

\section*{Ss}

Sales Tax Measures: In the California State Constitution and authorizes cities and counties to impose up to one percent additional local sales taxes for transportation if approved by the voters in the local jurisdiction.

Sandhouses: Storage facilities for abrasives and deicers.
Safety Roadside Rest: A roadside area provided for motorists to stop and rest for short periods. It includes paved parking areas, drinking water, toilets, tables, benches, telephones, information panels, and may include other facilities for motorists.

Segment: A portion of highway identified for analysis that is homogenous in nature.
Segment Concept (Existing): This term is applied to specific segments of a facility and describes the existing number of through travel lanes and any special features that may currently exist in the segment (such as auxiliary travel lanes, carpool lanes, access control, etc.). [see also Facility Concept and Segment Concept (20-year)]

Segment Concept (20-Year): This term is applied to specific segments of a facility and describes the number of though travel lanes and any special features that may be needed twenty years in the future in order to maintain the Concept LOS in the segment. [see also Facility Concept and Segment Concept (Existing)]

Separate Turning Lane: An auxiliary lane for traffic in one direction, which has been physically separated from the intersection area by a traffic island.

Shoulder: The portion of the roadway contiguous with the traveled way for accommodation of stopped vehicles, for emergency use, and for lateral support of base and surface courses.

Signalized Intersection: A place where two roadways cross and have a signal controlling traffic movements.
Stakeholder: Individuals and organizations that are actively involved in the project, or whose interests may be positively or negatively affected as a result of project execution or project completion. They may also exert influence over the project and its results. In transportation, stakeholders include FHWA, CTC, RTPAs, transportation departments, transportation commissions, cities and counties, Native American Tribal Governments, economic development and business interests, resource agencies, transportation interest groups, the public and the Legislature.

State Highway Account (SHA): The State Highway Account is used for the deposit of all money from any source for expenditure for highway purposes including major and minor construction, maintenance, right-of-way acquisition, improvements and equipment, services, investigations, surveys, experiments and reports.

State Implementation Plan (SIP): Plan required by the Federal Clean Air Act of 1970 to attain and maintain national ambient air quality standards.

State Routes: State highways within the State, other than Interstate and US routes, which serve intrastate and interstate travel. These highways can be freeways, expressways or conventional highways.

State Highway Operation and Protection Program (SHOPP): A four-year program limited to projects related to state highway safety and rehabilitation.

State Routes: State highways within the state, other than Interstate and US routes, which serve intrastate and interstate travel. These highways can be freeways, expressways or conventional highways.

State Transportation Improvement Program (STIP): Biennial document, adopted by the California Transportation Commission (CTC), which provides the schedule of projects for development over the upcoming five years.

\section*{Tt}

TBD: To-be-determined.
Terrain: The surface features of an area of land; topography. In capacity analysis, classification falls into one of three categories: level, rolling, or mountainous. The terms "terrain" and "grade" are not interchangeable (see "Grade").

Level: The land surrounding the highway is level or nearly level. The most typical example of level terrain is a valley.
Rolling: Land in the vicinity of the highway is composed of low hills, dips and rolls, or other types of undulations. Rolling terrain is found in many locations, including the foothills surrounding the Central Valley of California.

Mountainous: Terrain with extensive, steep slopes (often in excess of six percent) that may rise sharply on one side of the highway while dropping away rapidly on the other.

Three C Process (3C): "Continuing, cooperative and comprehensive" planning process. Required of metropolitan planning organizations (MPOs) as a condition for receiving federal capital or operation assistance.

Topography: The surface features of the land that a highway passes through (i.e. the topographic features of the surrounding land).
Traffic Conditions: Any characteristics of the traffic stream that may affect capacity or operation, including the percentage composition of the traffic stream by vehicle type and driver characteristics (such as the differences between weekday commutes and recreational drivers).

Traffic Conflicts: Exist wherever two vehicles have the potential of occupying the same space.
Traffic Count Stations: There are three types of traffic count stations on the highway:
Control stations: Counted in one-hour intervals by direction.
Profile counts: Obtained on conventional highways and expressways got one to seven days in order to determine the number of vehicles at points of significant change.

Classification counts: Generally collected at control station sites or at locations or significant truck traffic.
Traffic Lane: The portion of the traveled way for the movement of a single line of vehicles.
Traffic Markings: All lines, words, or symbols (except signs) officially placed within the roadway to regulate, warn, or guide traffic.
Traffic Projections: Estimates of future traffic growth
Traffic Sign: A device mounted on a fixed or portable support, conveying a message or symbol to regulate, warn, or guide traffic.
Traffic Signal: A power-operated control device by which traffic (including vehicles, pedestrians, and bicycles) is alternately directed to stop and permitted to proceed. A traffic signal assigns the right-of-way to the various traffic movements.

Transit: Generally refers to passenger service provided to the general public along established routes with fixed or variable schedules at published fares. Related terms include: public transit, mass transit, public transportation, urban transit and paratransit.

Transportation Concept Report (TCR): Planning document that identifies current operating conditions, future deficiencies, route concept, concept level of service (LOS) and conceptual improvements for a route or route.

Transportation Demand Management (TDM): "Demand-based" techniques for reducing traffic congestion, such as ridesharing programs and flexible work schedules enabling employees to commute to and from work outside of the peak hours.

Transportation Improvement Program (TIP): Federally required annual schedule of projects for transportation development for the upcoming five years. A project must be in the appropriate regional-Federal TIP to receive Federal or CTC funding.

Transportation Management Center (TMC): A focal point that can monitor traffic and road conditions, as well as train and transit schedules, and airports and shipping advisories. From here, information about accidents, road closures and emergency notification is relayed to travelers.

Transportation Permits: The Department of Transportation has the discretionary authority to issue special permits for the movement of vehicles/loads exceeding statutory limitations on the size, weight and loading of vehicles contained in Division 15 of the California Vehicle Code. Requests for such special permits require the completion of an application for a Transportation Permit from the office of Traffic Operations-Transportation Permits. Route Classes for length are labeled yellow, green, blue, brown and red. Route Classes for weight are labeled purple, orange and green. See http://www.dot.ca.gov/hq/traffops/permits/ for more information.

Transportation System Management (TSM): TSM is (1) a process oriented approach to solving transportation issues considering both short and long-term implications, and (2) a services and operations process in which low-cost, environmentally-responsive, and efficiency-maximizing improvements are implemented on existing facilities.

Travel Demand Model: A software tool used to predict future demand for transportation demand and services.

Travel Way: The portion of the roadway for the movement of vehicles, exclusive of shoulders.
Tribal Lands: Lands within a reservation, lands held in trust by BIA, or lands otherwise under the direct ownership of a tribe. Most tribal lands are in trust status and within a reservation, but these lands can also be outside of a reservation.

Truck Climbing Lane: Additional lanes added to improve traffic movement around slow moving vehicles on a grade.
Truck Escape Ramp: A long, gravel filled lane adjacent to the highway that enables vehicles that are having braking problems to safely stop.

Truck Scales: Weigh stations (also called "weigh stations") are where commercial trucks stop to get weighed and inspected.
Two-Way Stop Control: Traffic control at an intersection where the minor approaches are controlled by stop signs but the major street is not.

Typical Section: Depiction of the basic (or typical) design elements/features for an existing or planned facility. Typical sections can be prepared for a variety of facilities, including: highway sections, lane transition areas, medians, interchanges, pavement structural sections, bike paths and drainage systems.

\section*{Uu}

Unimproved LOS: This represents the unimproved LOS if not capacity projects were undertaken.
Urban: An area typified by high densities of development or concentrations of population, drawing people from several areas of the region.
U.S. Department of Transportation: The principal direct Federal funding agency for transportation facilities and programs. Includes the Federal Highway Administration (FHWA), the Federal Transit Administration (FTA), the Federal Railroad Administration (FRA), and others.
U.S. Route: A network of highways of statewide and national importance. These highways can be freeways, expressways or conventional highways.

\section*{Vv}

Vehicle Miles Traveled (VMT): Used in trend analysis and forecasts. (1) On highways, a measurement of the total miles traveled in all vehicles in the area for a specific time period. It is calculated by the number of vehicles multiplied by the miles traveled in a given area or on a given highway during the time period. (2) In transit, the number of vehicle miles operated on a given router or line or network during a specific time period.

Vista Point: A paved area beyond the shoulder, which permits travelers to safely exit the highway to stop and view a scenic area. In addition to parking areas, trash receptacles, interpretive displays, and in some cases rest rooms, drinking water and telephones may be provided.

Volume: The number of vehicles passing a given point during a specified period of time.

\section*{Ww}

Weaving: The crossing of traffic streams, moving in the same general direction, accomplished by merging and diverging.
Weigh Stations: Weigh stations (also called "truck scales") are where commercial trucks stop to get weighed and inspected.

\section*{Xx}

Intentionally left blank

\section*{Yy}

Intentionally left blank

\section*{Zz}

Intentionally left blank

\section*{APPENDIX U: RESOURCES}

Bureau of Land Management (2012). Eagle Lake Field Office: Top 10 Points of Interest. http:// www.blm.gov/ca/st/en/fo/eaglelake/topten.html
Bureau of Land Management (2015). Nevada and Northeastern California Greater Sage-Grouse Final Environmental Impact Statement.
California Department of Conservation (2003). Earthquake Shaking Potential for California. http://www.conservation.ca.gov/cgs/rghm/psha/Documents/shaking_18x23.pdf
California Department of Conservation (2010). Geologic Map of California. http://maps. conservation.ca.gov/cgs/gmc/
California Department of Conservation (2012). Important Farmland in California, 2012. ftp://ftp. consrv.ca.gov/pub/dlrp/FMMP/pdf/statewide/2012/fmmp2012_wallsize.pdf
California Department of Conservation (2015). CGS Information Warehouse: Regulatory Maps. http://maps.conservation.ca.gov/cgs/informationwarehouse/index. html?map=regulatorymaps
California Department of Education (2014). DataQuest. http://dq.cde.ca.gov/dataquest/
California Department of Finance (2013). State and County Population Projections. http://www. dof.ca.gov/research/demographic/projections/
California Department of Fish and Game (1980). The Lassen-Washoe Interstate Deer Herd: A Status Report Recent Studies and Impacts. http://www.tws-west.org/transactions/Kahre. pdf
California Department of Fish and Wildlife (2015). Ecological Reserves and Wildlife Areas of California. https://www.wildlife.ca.gov/Lands/Places-to-Visit
California Department of Fish and Wildlife (n.d.). California Natural Diversity Database. http:// www.dfg.ca.gov/biogeodata/cnddb/mapsanddata.asp
California Department of Toxic Substances Control (2007). EnviroStor: Hazardous Waste and Substances Site List. http://www.envirostor.dtsc.ca.gov/public/
California Department of Transportation (1984). Route Concept Report: Route 395.
California Department of Transportation (1990). Draft Transportation Corridor Fact Sheet on Route 395 in Lassen County from Junction Route 70 to Junction Route 36.

California Department of Transportation (2002). District 2 Field Region Maintenance Facilities. http://www.dot.ca.gov/hq/row/wireless/maint/D2 Field region.pdf

California Department of Transportation (2005). Areas Likely to Contain Naturally Occurring Asbestos: Caltrans District 2. http://onramp.dot.ca.gov/hq/maint/roadway rehab/gis/ District02 NOA 05.pdf

California Department of Transportation (2008). Caltrans District 2: Cycling Guide for State Highways of Northern California. http://www.dot.ca.gov/dist2/pdf/bikeguide.pdf

California Department of Transportation (2009). State Route 299 Transportation Concept Report. http://www.dot.ca.gov/dist2/planning/conceptrpts.htm

California Department of Transportation (2012). Caltrans Earth. http://earth.dot.ca.gov/
California Department of Transportation (2012). State Route 36 Transportation Concept Report. http://www.dot.ca.gov/dist2/planning/conceptrpts.htm

California Department of Transportation (2013). Interregional Transportation Strategic Plan: Status Update. http://www.dot.ca.gov/hq/tpp/offices/omsp/system_planning/docs/ITSP document 11_25_2013 rev1.pdf\#zoom=75
California Department of Transportation (2014). 2014 Named Freeways, Highways, Structures and Other Appurtenances in California. http://dot.ca.gov/hq/tsip/hseb/products/Named_ Freeways Final.pdf
California Department of Transportation (2014). Caltrans Park and Ride Inventory. http://www. dot.ca.gov/hq/traffops/trafmgmt/hov/Park_and_Ride/
California Department of Transportation (2014). Traffic Counts. http://traffic-counts.dot. ca.gov/
California Department of Transportation (2015). Interregional Transportation Strategic Plan. http://www.dot.ca.gov/hq/tpp/offices/omsp/system_planning/docs/Final_2015 ITSP. pdf
California Department of Transportation (2015). Long-Term Socio-Economic Forecasts by County. http://www.dot.ca.gov/hq/tpp/offices/eab/socio economic.html
California Department of Transportation (2015). Park and Ride Lots District 2. http://www.dot. ca.gov/hq/traffops/trafmgmt/hov/Park_and_Ride/maps/d2.html
California Department of Transportation (2015). Truck Networks on California State Highways: District 2. http://www.dot.ca.gov/hq/traffops/trucks/truckmap/truckmap-d02.pdf
California Department of Transportation (n.d.). Local Public Facilities \& Maintenance Stations. http://www.dot.ca.gov/dist2/pdf/d2map.pdf
California Energy Commission (2015). Cal-adapt: Climate Tools. http://cal-adapt.org/ tools/
California State Water Resources Control Board (2015). GeoTracker. http://geotracker. waterboards.ca.gov/
City of Reno (2010). Land Use Plan. http://reno.gov/home/showdocument?id=27543
City of Susanville (2014). Comprehensive Annual Financial Report. http://www.cityofsusanville. net/wp-content/uploads/documents/finance/CityofSusanvilleCAFR2014Final.pdf

Federal Emergency Management Agency (2010). Flood Map Service Center. https://msc.fema. gov/portal
GCR Incorporated (2015). Airport IQ 5010 Airport Master Records and Reports. http://www.gcr1. com/5010web/default.cfm
Lake County, Oregon (2002). Lake County Transportation System Plan. http://www.oregon.gov/ ODOT/TD/TDATA/gis/planning_document_portal/tsp/county/county_of lake_tsp_2002. pdf
Lassen County (2000). Lassen County General Plan. http://www.lassencounty.org/govt/dept/ planning_building/planning_division/general_area_plans.asp
Lassen County (2009). Draft Lassen County Area Plan Update. Phase I: Vision and Preferred Direction Summary.
Lassen County (2012). Draft Regional Transportation Plan. http://www.Isctahoe.com/ LassenRTP.htm

Lassen County (2014). 2014-2019 Housing Element Update.http://www.hcd.ca.gov/housing-policy-development/housing-resource-center/plan/he/housing-element-documents/ lassen_county 5th_draft042114.pdf
Lassen County (2015). Lassen County Park \& Ride Study Report.
Lassen County Transportation Commission (2011). Lassen County Bikeway Master Plan. http:// www.lassencounty.org/govt/dept/pub works/documents/bmpupdate.pdf
Lassen County Office of Education (n.d.). Home Page. http://www.lassencoe.org/
Lassen County Office of Education (n.d.). Present Day Towns of Lassen. http://www. lassencoe.org/index.php?option=com_content\&view=article\&catid=27\%3Ahistory-day-curriculum\&id=106\%3Apresent-day-towns-of-lassen\&ltemid=113\#ravendale
Lassen Land \& Trails Trust (2009). Modoc Line Rail Trail. http://www.lassenlandandtrailstrust. org/modoc-line-rail-trail.html
Modoc County (1988). Modoc County General Plan. http://www.co.modoc.ca.us/departments/ planning/general-plan
Modoc County (2015). Sage Stage: Local and Regional Bus Service Connecting Modoc County. http://sagestage.com/
Modoc County Planning Department (n.d.). Living Rural. http://modoccounty.granicus.com/ MetaViewer.php?view_id=2\&clip_id=76\&meta id=6650
Modoc County Transportation Commission (2014). Draft Regional Transportation Plan. http:// sagestage.com/wp-content/uploads/2014/09/2014-Draft-MCTC-RTP.pdf
NoeHill (n.d.). Historic Sites and Points of Interest in Modoc County. http://noehill.com/modoc/ default.aspx
National Park Service (2015). California National Historic Trail. http://www.nps.gov/cali/index. htm
Nevada \& Arizona Departments of Transportation (2014). I-11 and Intermountain West Corridor Study: Corridor Concept Report. http://i11study.com/IWC-Study/PDF/2014/I-11CCR Report 2014-12_sm.pdf
Oregon Department of Transportation (2013). Traffic Flow Map 2013. http://www.oregon.gov/ ODOT/TD/TDATA/tsm/docs/Flow_Map_2013.pdf
Sierra County Transportation Commission (2015). Sierra County 2015 Regional Transportation Plan. http://www.sierracounty.ca.gov/DocumentCenter/View/1592
State of California (n.d.). California Streets and Highways Code. http://www.leginfo.ca.gov/.html/ shc table of contents.html
The Historical Marker Database (2015). http://www.hmdb.org/
United States Census Bureau (2015). American FactFinder. http://factfinder.census.gov/faces/ nav/jsf/pages/index.xhtml
United States Department of Agriculture (2011). Susan River Area Rapid Watershed Assessment. http://honeylakevalleyrcd.us/wp-content/uploads/2012/02/NRCS_Final Draft_-Susan_R_Area_RWA.pdf
United States Department of Transportation (2012). Bicycle and Pedestrian Program: Accommodating Bicycle and Pedestrian Travel: A Recommended Approach. http://www. fhwa.dot.gov/environment/bicycle_pedestrian/guidance/design.cfm\#d3

United States Department of Transportation (2015). National Highway System: California (North). http://www.fhwa.dot.gov/planning/national highway system/nhs maps/ northern california/ca_californianorth.pdf
United States Department of Transportation (2015). National Highway System: High Priority Corridors. http://www.fhwa.dot.gov/planning/national highway system/high_priority corridors/
United States Department of Transportation (2017). Road Diet: Case Studies. https://safety. fhwa.dot.gov/road_diets/case studies/
United States Forest Service (n.d.). Plumas National Forest: Beckwourth Ranger District. http://www.fs.usda.gov/recarea/plumas/recreation/camping-cabins/ recarea/?recid=11183\&actid=29
vRide (n.d.). http://www.vride.com/
Washoe County, Nevada (2010). Master Plan: Cold Springs Area Plan. https://www. washoecounty.us/csd/planning_and_development/master-plan-zoning/files/cold springs_area_plan.pdf
Washoe County Regional Transportation Commission (2017). Regional Transportation Plan. https://www.rtcwashoe.com/mpo-projects/rtp/
```


[^0]: For individuals with sensory disabilities, this document is available in Braille, large print, on audiocassette, or computer disk. To obtain a copy in one of these alternate formats, please call or write:
 Department of Transportation Attn: Equal Employment Opportunity Officer 1657 Riverside Drive Redding, CA 96001
 (530) 225-3055 Voice, 711 Statewide TTY

 Caltrans is an Equal Opportunity agency. Federal law prohibits discrimination.

[^1]: *2010 Census - United States Census Bureau

[^2]: *2010 Census - United States Census Bureau

